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Abstract

Passive depth and displacement map determinations have become an

important part of computer vision processing. Applications that make use of

this type of information include autonomous navigation, robotic assembly,

image sequence compression, structure identification, and 3-D motion

estimation. With the reliance of such systems on visual image characteris-

tics, a need to overcome image degradations, such as from random image-

capture noise, motion, and quantization effects, is clearly necessary. Many

depth and displacement estimation algorithms also introduce additional

distortions due to the gradient operations performed on the noisy intensity

images. These degradations can limit the accuracy and reliability of the

displacement or depth information extracted from such sequences.

Recognizing the previously stated conditions, a new method to model

and estimate a restored depth or displacement field is presented. Once a

model has been established, the fields can be filtered using currently

established multidimensional algorithms. In particular, the reduced order

model Kalman filter (ROM_KF), which has been shown to be an effective tool

in the reduction of image intensity distortions, was applied to the computed

displacement fields. Results of the application of this model show significant

improvements on the restored field. Previous attempts at restoring the

depth or displacement fields assumed homogeneous characteristics which

resulted in the smoothing of discontinuities. In these situations, edges were

lost. This thesis provides an adaptive model parameter selection method

ix



that maintains sharp edge boundaries in the restored field. This has been

successfully applied to images representative of robotic scenarios.

In order to accommodate image sequences, the standard 2-D ROM:KF

model is extended into three dimensions by the incorporation of a determin-

istic component based on previously restored fields. The inclusion of past

depth and displacement fields allows a means of incorporating the temporal

information into the restoration process. A summary on the conditions that

indicate which type of filtering should be applied to a field is provided.
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CHAPTER 1

1. Introduction to Research Topic

1.1. Problem Definition and Motivation

Passive depth and displacement fieldestimations have become an important

part of computer vision and image processing. Applications include

autonomous navigation, vision assisted robotic assembly of structures,

image sequence compression, structure identification, and 3-D position and

motion of objects. With the reliance of such systems on visual character-

istics, a need to overcome image de_-adations or distortions, such as from

random image-capture noise, motion blurring, and quantization effects, is

clearly required. Many algorithms, used in the estimation of displacement

and depth fields, introduce additional distortions due to the gradient

operations applied to the input intensity images. These degradations can

limit the accuracy and reliability of the displacement or depth information

extracted from such images. With these observations in mind, a new

method to estimate a restored depth or displacement field is presented.

Specifically, this thesis is concerned with the application of a model-

based approach to the estimation of depth and displacement maps from

image sequences or stereo image pairs. Once a model has been developed,

the fields can be filtered using established multidimensional algorithms. A

model-based Kalman type estimator is presented for spatio-temporal

filtering of noise and degradations in the depth and displacement fields. Of

particular interest is the estimation of displacement in general continuous

fields and fields _dth rigid objects of known shape and dimensions. Results
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show that the reduced order model Kalman filter (ROMKF) [6] is an

effective procedure to reduce distortions in the estimated fields.

In order to accommodate image sequences, the standard 2-D ROMKF

model is extended into three dimensions by the incorporation of a deter-

ministic component based on previously restored fields. The inclusion of

past depth and displacement fields allows a method of incorporating the

temporal information into the restoration process. A summary of the

conditions that indicate which type of filtering (i.e., spatial homogeneous,

spatial multiple-model, or spatio-temporal) should be applied to a field is

provided.

1.2. Contributions

The depth and displacement fields calculated from intensity images are

crucial components in many computer assisted operations. When dealing

with corrupted intensity images, the accuracy and reliability of the

estimation of these fields are questionable. This thesis presents a method

that deals with these situations and provides the follo_ving contributions:

• The presentation of a model to describe the underlying

process for the depth and displacement field is given. Such modeling

provides a method of obtaining more accurate and reliable field results than

current non-model based estimation algorithms.

• The application of the ROMKF with a non-symmetric half

plane support region is used to restore distorted depth and displacement

fields. The ROMKF allows for a reduction in the order of the system state

vector for filtering purposes, thus reducing the computational complexity of
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model parameter estimation and filtering. The model parameters are

estimated from the distorted fields.

• The use of adaptive parameter selection in the filtering

procedure allows for changes in the underlying depth and displacement

fields when dea/ing with discontinuity regions. The use of a homogeneous

support model tends to smooth out edge content, whereas a multiple model

approach allows for distortion reduction while maintaining clear

discontinuities, sharp edges, in the restored fields.

• The extension of established general 2-D spatial modeling to

3-D by the incorporation of a deterministic temporal component, which is

based on the results of the previously restored field, is presented. This

allows for the processing of pairs of image sequences.

• The provision by which direct or indirect observations may be

employed is provided in the selection process of the observation equation.

Direct observation deals with the actually corrupted intensity images, while

indirect observation deals with the distorted depth and displacement fields

obtained through an external source, such as those provided through a

stereo region matching algorithm.

• The use of prefilteringthe intensity images prior to the depth

and displacement estimation stage is shown to yield greater noise reduction

in the restored field.

1.3. Terminology

Symbology:

d - true displacement 2-D vector from t to t + T

a - estimated displacement 2-D vector from t to t + T
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d - depth or displacement component, x or y

D - depth or displacement system state vector

I - intensity value

T- time between frames

X - 3-D location of a point in space

x - 2-D location of a point in an image

Constant Displaced Intensity relates intensity changes to the

displacement fields by assuming that the intensity remains constant along

the true displacement vector, d = (d x, dy}:

I(x.y,t) = I(x+dx.y+dy,t +T) (1)

Figure 1.1 graphically shows this assumption for an image sequence.

X = (x,y)

Figure 1.1 - Constant Displaced Intensity Representation
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Depth Field is a dense 2-D field of scalar values representing the

depth of the object imaged in each pixel location relative to a specified

reference location. The term depth map is equivalent to depth field.

Dense Field is a field composed of a set of values for each location. In

image fields, values are computed for each pixel, although some areas may

be noted to contain no information. (See Sparse Field).

Displacement Field is the dense 2-D field of vectors describing the

movement of intensity re_ons from one image to another. The 2-D field of

vector values at each pixel represents the direction and distance of

translation of intensity re_ons from one frame to another in image

sequences. In specific stereo camera setups, one component of the vector

value is zero, so the displacement field reduces to a 2-D field of scalar

disparity measurements between the left and the right images. (See Section

2.2). The term displacement map can be used interchangeably with

displacement field.

Displaced Frame Difference, abbreviated as dfd, is the intensity

difference between a pixel and the past frame's pixel shifted by the

estimated displacement vector, d = {dx.ay}. Using the assumption of

constant pixel intensity between displaced frames, the displaced frame

difference is equal to zero when the estimated displacement is identically

equal to the true displacement:

dfd(x,y;ax.dy) = I(x,y,t) - I(x + ct_,y + cly,t + T) (2)

Disparity refers to the len_h in pixel units of the correspondence of

an image intensity re,on from one image to another in a stereo camera

setup.
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Optical Axis is the perpendicular projection from the image plane

through the center of the lens or the pinhole in a simple camera model, see

Figure 1.2.

Optical Flow, mathematically introduced by Horn [27], is the

apparent motion of intensity regions in an image due to motion of the object

imaged, motion of the viewer, or a combination of these effects. This relative

motion is described as vectors in a dense 2-D field. This field will be

referred to as the displacement field.

Perspective Projection is a common method used to describe the

object's image formation process. This projection relates a point,

X = (X, Y, Z), in 3-D space back to a point, x = (x, y), in the 2-D image plane.

This type of projection is also referred to as an ideal pinhole camera or back

projection [53].

Optical Axis

| Center of
^ Projection

Figure 1.2 - Perspective Projection Camera Model

By using the simplifying assumption that light travels in straight

lines, simple geometric relations, see Figure 1.2, can be developed. In this

figure, the optical axis is defined as the perpendicular line from camera lens

or center of projection to the image plane. By aligning a Cartesian
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coordinate system with the origin coincident with the center of projection

and the z-axis directed towards the image plane along the optical axis, a

right handed system is defined. The optical focal length, f, is the linear

distance of the image plane from the lens or center of projection. The

following geometric relations are found [26]:

fX fY
x=_ • Y='-- (3)Z Z

Sparse Field is a field composed of a relatively small number of values

computed for selected locations. When a sparse field is determined, the

values are computed for a few identified feature points as opposed to every

point in the image. (See Dense Field).

1.4. Applications and Relevance

Passive displacement and depth field determinations have become

important components in robotic control and vision processing. The use of

depth and displacement fields has found many applications ranging from

autonomous navigation of planetary explorers, robotic assembly of

structures with vision assisted path planning, to intensity image frame

interpolation and medical imaging and diagnostics. Such robotic work is

currently being carried out in the NASA CIRSSE Labs at Rensselaer [14].

Unfortunately, the depth and displacement fields are unknown in

general and usually must be estimated from the input intensity sequence

pairs. The above systems must work with intensity image data that may be

corrupted by noise or other degradations. These degradations and various

gradient operations on the corrupted intensity images greatly reduce the

accuracy and reliability of information extracted from the estimated depth
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and displacement fields, which in turn degrade the overall system's

performance. To improve performance, the degraded depth and

displacement fields must be restored. This thesis presents a successful

modeling and filtering procedure that accomplishes this restoration. Thus,

more accurate information is provided for the systems to process.

Displacement maps have becomean important tool for recovering 3-D

motion and depth from image sequences. Heeger and Jepson in [24]

approach the nonlinear problem of recovering 3-D motion parameters and

depth by separating the task into recovering first the translational

components, then the rotational components, and finally the depth. To test

their algorithms, the authors make use of an optical flow field calculated

from known camera motion and a known depth map. This avoids the issues

of degradations in computing displacement fields from the actual image

sequences as would be required for an unknown depth field.

Another technique to estimate structure and 3-D motion [1] derives

these properties in three dimensions from the estimated displacement field

and its spatial first and secondorder derivatives. These techniques require

a smooth variation in the displacement field and assume smooth surfaces on

the objects imaged. This underlines the importance of restoration of the

displacement field, since typical levels of distortions or noise sources can

severely degrade the reliability of higher order derivatives.

Recovering the 3-D parameters and depth from images is a central

issue to robotic applications. Autonomous land navigation and robotic

assembly make use of displacement maps as a tool to establish the world

environment [3, 10, 21, 25, 39, 50, 63]. The ability to navigate, avoid,
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identify, and track objects are major goals for vision input to robotic

applications. Dense depth and displacement field calculations from stereo

pairs offer several advantages over other sparse depth estimation systems

such as in structured hghting systems. Among the advantages are:

• A non-active operation which avoids alignment and detection

of light patterns.

* Consumption of less power than active lighting methods,

which may be of considerable importance for space operations.

* Capability for complete scene capture which allows for

subsequent computations on a temporally consistent dense field.

Complete scene capture allows for calculations over most of the image

features at a single time instant and thus is suited for determination of time

varying object parameters. This allows modeling to be done with relatively

fewer frames than is required with a sparse sampler such as laser spotter

systems. A related topic to non-active sparse samplers is the feature

matching procedure in which prominent features are extracted from the

image and the 3-D parameters are determined. Several authors [16, 33]

point out the difficultyin determining the features and the severe problems

in sensitivity to ambiguity.

As with any method of solution, dense depth and displacement

estimation calculations can present several problems. The major problem is

the computational cost due to the large quantity of data required when

dealing with images. Methods to overcome this cost will be addressed in

Section 4.5 of this thesis. Areas in which there is littlecontrast pose

problems for gradient based displacement estimators. One author [42]
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suggests that the high contrast areas be identified and that these regions be

used to estimate the displacement. Discontinuities in the depth field also

present a challenge. This is of particular importance to robotic assembly

tasks in which the identification of the boundaries of the object determined

by the edges of the depth fields must be accurately known. Incorrect

estimates may result in damage to the object or the robot. The model based

restoration procedure detailed in this thesis overcomes these problems.

Bandwidth compression is fast becoming a required function to

address the expanding requirements on information transfer. From its early

beginnings [46, 47], image coding has made use of the temporal correlations

between frames. Today, issues of High Definition Television, multimedia

applications, video phones, and teleconferencing have extended the need for

further research in motion compensated coding and compression.

One related area that has shown great promise is motion

compensated image sequence restoration [29, 30, 34, 35]. A vast amount of

material and algorithms exist for restoration and noise suppression in a

single intensity image. With the availability of digital image sequences, the

strong temporal correlation between successive images can be integrated

into the modeling and restoration process, thus producing a superior image

product. In the past, the high cost of computation and limitations on the

systems resources available, such as processing speed, computer memory

(amount of as well as access time), and limited disk based storage, have

made motion compensated restoration prohibitive. With the introduction of

massively parallel computers, dedicated array processors, and large memory

banks, these techniques will become more prevalent. The results of this
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thesis will be crucial in providing the displacement information necessary

for these intensity image restoration algorithms.

1.5. Thesis Outline

This thesis is sectioned into six chapters that cover the background,

research approach, results, and summary of the research.

Chapter 2 is concerned with the specific problem encountered with

the determination of the depth and displacement fields. Pertinent literature

is cited to provide a history of the techniques used to estimate depth and

displacement fields. Several algorithms currently used to estimate the fields

and the limitations of such systems are discussed. Since these algorithms

work with corrupted input intensity images, various distortions are

introduced by gradient or correlation operations applied to the intensity

images. This historical treatment provides the background to the problem

and presents the initial motivation for the study of the modeling and

restoration of the depth and displacement fields.

Chapter 3 presents a detailed description of the main modeling and

filtering contributions of this thesis. Models are developed to describe:

a) the underlying depth and displacement fields and

b) the observation process.

The models are incorporated into a system which employs a multi-

dimensional recursive filter to restore the distorted fields. A

computationally efficient algorithm based on the ROMKF is used, and the

models developed for depth and displacement fields are incorporated into

the framework of the reduced order model. Various issues in modeling

including spatial, temporal, and spatio-temporal supports are discussed.
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Chapter 4 is concerned with the application and implementation

issues of this restoration procedure. The coefficients for the homogeneous

support model are determined from the distorted fields. The issue of

discontinuities in the depth fields and its importance to robotic vision is

covered in detail. This motivates one to consider a multiple model approach

that describes variations of the field while allowing for reduction of

distortions and maintenance of sharp edgeboundaries. Since we are dealing

with images, vast quantities ofpixels need be processed. To provide efficient

processing, a parallel processing version is described.

Chapter 5 contains the results of the estimation and restoration of

distorted or degraded depth and displacement fields. Several types of

images are used to demonstrate the validity of this approach and the

beneficial effects of the model based filter. Effects of prefiltering the

intensity images, modifying the observation equation, and adaptively

selecting model support are detailed.

A discussion and summary of the successof this approach to restoring

depth and displacement fields from image pairs are presented in Chapter 6.



CHAPTER 2

2. Depth and Displacement Field Formulation

2.1. Introduction

In this chapter, procedures to estimate depth and displacement from pairs of

images are reviewed from current literature to provide a detailed

background study of this problem. The depth and displacement fields are

calculated from pairs of intensity images either from stereo image pairs or

sequences of images. Several authors [10, 26, 27, 40, 44, 54, 55] have

proposed methods to smooth the resulting calculations by placing

constraints on the neighboring values or by filtering the fields with methods

currently applied to image processing, such as low pass filters or region

smoothing operators. Many of the methods operate directly on the discrete

intensity values to formulate the fields. Degradations in the image

formulation process result in errors in the depth and displacement fields.

Not only must the fields be smoothed to account for the local gradient

operations, but noise and blurring must also be considered.

2.2. Geometry for Depth and Displacement Fields

Displacement maps represent the translations of intensity regions from one

frame to another or, in the case of a stereo setup, from the image obtained

from one camera to another. The displacement map is a 2-D field with

vector values at each pixel to represent direction and distance of translation

of intensity regions from one image to another. The displacement vector is

assigned to a single pixel, but for implementation purposes most researchers

have made a common selection for a re,on as a square patch centered on

13
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each pixel (intensity patch region). The displacement value is assumed to be

constant for the patch region, and the calculated displacement vector is

assigned to the center pixel. Another option available is to make the

selected region dependent on the image content. This requires some form of

segmentation in an effort to group pixels with similar displacements.

Displacement fields, which indicate apparent movement of intensity

regions, can be used to represent changesdue to depth and relative camera

translations as in stereo frames or velocity of objects captured in image

sequences. Although tracking intensity patch regions is a popular

procedure, other methods exist to determine displacement fields. One such

method is the imaged object feature-based method [24, 25]. In feature-based

methods, prominent intensity image features are extracted from each scene

and tracked from image to image. This procedure usually produces a sparse

field for the displacement in the scene.

When dealing with frame to frame changes taken over a period of

time, assuming constant lighting conditions, the displacement map

represents the temporal variation in the intensities that are due to motion of

the observer, motion of individual objects in the scene being imaged, or a

combination of these effects. A scene undergoing 3-D motion produces a

projection of the motion as translations of intensity patch regions on the

image plane. These sequences of time-variant images are represented as

2-D vector fields, referred to as the velocity map or optical flow. This

velocity map represents the motion (both magn-_itude and direction) of the

intensity patch regions in the image plane. Apparent motion in the image

plane may also be due to rapid changes or movements in the lighting
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conditions. Changes in light intensity, from one frame to the next, brought

about by variation of the lighting conditions creates an additional

modification of the intensity patch regions that is beyond the scope of this

thesis.

Figure 2.1 shows a graphical example of a displacement field, DF(t),

for a pair of sequential images and how a series of displacement fields can be

generated for an extended set of image sequences.

DF(t) _J I(t+3)
I(t÷5)

(t÷6)[

DF(t+3)

Figure 2.1 - Displacement Fields for Image Sequence

When dealing with a stereo camera setup, two images of a static scene

are captured simultaneously. The displacement field is calculated from the

stereo images on a per pixel basis and can be used to compute the depth of

the imaged locations from the camera setup. The camera positions and

optical properties of the imaging system are known a priori and are usually

configured to facilitate the identification of the correspondence between

objects in both images. A common method is to ali=_n the optical axes so that
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they are mutually parallel and perpendicular to the connected baselines of

the cameras [26] as represented in Figure 2.2.

To obtain an estimate of the depth, a pixel in the left image,

x I = (xl,y,), is matched to a pixel in the right image, x r = (xr.yr). This

matching procedure is referred to as the correspondence problem. Searches

for matches need only be done along the x-axis since Yl = Y_ is fixed by the

geometry of the cameras. The image points in correspondence must lie

along the same line called the epipolar line which is parallel to the x-axis in

this geometric configuration.

:¢:!_:':" >

\
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b \

Left Image Right Image

Figure 2.2 - Stereo Camera Configuration

Once the displacement, x I -x_, which is sometimes referred to as the

disparity [26], is known, the 3-D coordinates of the point, X = (X.Y,Z), can

be determined by:

1 XX=b (,+x,)
X 1 -- X r

1

. y=b g(y' + yr)

X I -- X r

, Z=b--
X 1 -- X r

(4)
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where f is the focal length of the lens and b the baseline length between the

optical axes. Each component of the 3-D coordinate is inversely proportional

to the estimated displacement between the frames. As the object becomes

closer to the stereo camera system, the estimate of the coordinate becomes

more accurate. Since the disparity is proportional to the baseline length

between the cameras, making the baseline larger results in greater disparity

and resolution, but the identification of the correspondence of matching

regions in the stereo pair becomesincreasingly more difficult to identify.

The above configuration for stereo cameras allows for rapid and

efficient algorithms to be developed by restricting their "search" for image

alignment to a 1-D space. The displacement field represents the distance for

correspondence between the two images for this alignment, i.e., disparity,

and thus represents the distance or depth of each projected pixel from the

stereo camera setup.

The notation II (x, y, t) and Ir(x,y,t ) denotes the intensity value at

pixel location (x, y) at time t for the left and right images respectively. With

the alignment established for the stereo cameras, objects imaged in the left

camera appear on the same scanline as those present in the right image. In

the ideal setup an imaged object appearing at Il (x, y, t) would also appear at

Ir(x-d(x,y,t),y,t), where d(x,y,t)is the disparity value for location

(x,y,t). Using I(x,y.t)to denote the image signal of the scene, the left and

the right stereo images may be expressedas:

II(x,y,t) = I(x,y,t) + nt(x,y,t) (5)

I_(x,y,t) = I(x + d(x,y,t),y,t) + n_(x,y,t) (6)
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where n,(x,y.t) and nr(x.y.t ) account for the noise process in the leftand

right images of location (x,y) at time t. Once the disparity, d(x,y,t), is

estimated, the 3-D locations for the imaged points of the scene can be found

relative to the stereo camera origin by (4). Notationally, the leftand right

camera images may also be viewed as images taken at t and t + T by a

single camera undergoing lateral translation.

2.3. Literature Review

Several reviewers [I, 40, 58] present a survey of the methods used in the

determination of motion from a sequence of images. The most common

methods are feature-based which produces sparse mapping and stereo

matching and gradient based which produce dense mappings.

Aggarwal in [1] presents a comparative review of feature-based vs.

gradient based (optical flow) algorithms for depth and motion estimation.

Feature-based algorithms are separated into three major categories: direct

methods on identified points, a priori knowledge on the rigidness of objects

by multiple views, and extended sequence feature processing of monocular

images. Feature-based algorithms have a common problem of identifying

the feature points in the image, localizing the features, and then finding the

correspondence between frames. These methods have an additional

computational problem of how to automatically determine the number and

type of features that are necessary to identify the object when attempting to

characterize the displacement for complex scenes.

Whereas feature-based methods identify a few "key" components in

the image to track and form a sparse field, the optical flow method produces
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a dense field based on spatial and temporal gradients of the intensity

images.

Some of the early work on the determination of displacement maps by

optical flow is given by Horn and Schunck in [27]. They present a solution

for determining the optical flow from a set of computer generated image

patterns by deriving the image gradient constraint equation. This

constraint equation relates the velocity of an imaged pixel to its change in

intensity from sequences of images. An assumption is made that the

observed intensity of a patch undergoes uniform translation over time.

I(x,y,t) denotes the intensity at image location (x,y) at time t. For a small

increment in time St, the assumption indicates that the same intensity

would be observed at the point {x+Sx,y+Sy} at time t+St. This

assumption is expressedas

I(x,y,t) = I(x + 5x,y + 5y, t + St) (7)

Equation (7) deals with intensity field shifts brought about through small.

incremental changes in x, y, and t. Although this equation appears to be

similar to (1), it should be emphasized that (1) deals with interframe

displacements for a frame rate T. The assumption, used in (7), of uniform

translation allows for tracking the intensity field shit_s over time. A Taylor

series expansion can be formed about the pixel (x, y, t) to give:

I(x+Sx,y+Sy.t+St)=I(x,y,t)+-_Sx+_Sy+ _ISt_t + E (8)

for small values of 8x, 5y, and St. The expansion is represented as a series

of first order terms with e accounting for the higher order terms of 8x, By,
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and St. By neglecting the higher order terms of (8) and substituting into (7),

the following equation is formed [54]:

-_ + =0
5t @ 5t (9)

Taking the limit as 5t_0, the final form for the gradient constraint equation

becomes:

where

Ixv x+Iyvy+I t =0 (10)

and (v_,vy) is the velocity component of the optical flow in the x and y

directions respectively. The vector d = (dx, dy), where d_ = v_T and

dy = vyT, is the desired displacement vector for the pixel located at (x, y) for

time T between image frames. The collection of the displacement vectors for

all pixels forms the velocity field, which is the same as the displacement

field for the image pair. The gradient constraint equation (10) may be re-

written in the form:

I_u + Iyv - -I t (12)

where u and v are the x and y component of the velocity vector at location

(x,y).

Equation (10) highlights the

displacement estimation is ill posed.

fact that the problem of velocity

In this single constraint equation,

since there are two unknowns, a unique velocity component can not be
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determined from only a single measurement. Horn provides a graphical

explanation of (10) as a constraint line in the velocity domain. Since the

velocity field can not be locally determined uniquely, additional constraints

are necessary.

To get around this difficulty, Horn proposes a modification of the

problem where a smoothness penalty is imposed on the local velocity field.

A set of iterative equations is developed [27], and results are provided only

for a continuous pattern region wdth an optical flow that had no temporal

change. The gradients are computed directly from differences in the

intensity images with no consideration of image noise or other degradations.

Although these results are adequate for the synthetic conditions imposed,

they are not appropriate for more realistic scenes. Some problems with this

technique include the lack of detection of motion boundaries and

discontinuities in the intensity image, temporal changes in optical flow (i.e.,

translating objects against a background), noise sensitivity in the gradient

estimation, and blurring of the motion boundaries. A detailed study of the

errors, inherent in the local optimization of equation (10), due to the

gradient measurements, non-uniformity in the flow field, and the condition

on the linear equation is presented in Kearney [33].

Schunck in [54, 55] overcome some of these earlier deficiencies by

making use of an algorithm that employs constraint line clustering to

estimate image flow on discontinuous velocity fields. Additionally, this

algorithm attempts to detect motion boundaries and turns off velocity field

smoothing when in close proximity to a boundary. Boundary detection,
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poorly conditioned solutions, and noise sensitivity still present problems for

this algorithm.

Ballard and Kimball in [10] augment the traditional computation of

general rigid body motion using displacement fields (optical flow) by also

incorporating known depth information. They maintain that computation of

the velocity vectors in three dimensions, which they term 3-D flow, needs to

include the depth information, in addition to the optical flow, to be

constrained and estimated. The Hough Transform is incorporated to relate

the intrinsic image features to global parameter values and is used to obtain

the solutions to the 3-D flow.

Heeger and Jepson [24, 25] compute 3-D motion parameters by

decomposing the nonlinear problem of 3-D motion into three sets of

equations. They propose a _direct" method based directly on the spatio-

temporal gradients of the image intensity, but do not make use of it in the

work presented [24]. Instead they compute the displacement field by known

camera translations on a known scene. This avoids the issue of optical flow

calculations on the input intensity images.

In the area of model-based displacement field estimation, Matthies,

Szeliski, and Kanade in [43] estimate depth from image sequences taken

with known camera motion. The optical flow equation as developed earlier

in this chapter can be written in terms of known camera 3-D translational

velocities, T = (Tx,Ty,Ty) T, and 3-D rotational velocities, R = (Rx.Ry.Rz) T.

Using this notation, the optical flow with unit focal len_h, (Sx. 5y) T, can be

rewritten as in [43]:
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1E1°xr xtIJL :l,1 x2,Yl[!il8y=_ o -i y ÷ (1+y') -_y -x (13)

where I/Z is the inverse depth and (x,y) is the image coordinates. Equation

(13) relates the known camera translations and estimated depth to the

induced displacement field.A I-D Kalman filteris used to update and filter

the depth field. Their work investigates the use of small lateral camera

translations in an effort to estimate the depth field. Using the known

camera movements, the incremental depth, AZ, at a point (x,y) from time t

to t + T is predicted for the next frame as:

AZ = -Tz - RxyZ + RyxZ (14)

Due to the spatial quantization of images, the depth values have to be

interpolated based on a neighborhood to re-orient them to the lattice. In a

similarly manner, Bridwell makes use of lateral camera motion to estimate

the depth of structures [12].

A method to find the displacement between image pairs that

implements a simple correlation-based matching criteria is proposed by
t

Anandan [4]. Anandan uses the Sum of the Squared Differences (SSD)

based on a weighted difference between sliding intensity patches. One

problem with this method is that these search methods are sensitive to

interpixeI interpolation methods, quantization of the motion vector, and

computational complexity. This procedure will be detailed in section 2.4.2.

In contrast to the direct intensity gradient and the correlation-based

methods to estimate the depth and displacement fields, Martinez in [41]

proposes the use of parametric models from a set of basis functions to
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describe intensity surfaces and computes the gradients directly from the

model. When estimating the raw displacement map, a least squares fit to

the intensity images is done on a 5x5 region centered about each pixel. To

smooth the resultant displacement field, a weighted local average is used.

In contrast to the work presented in the existing literature, the work

presented in this research makes use of a model-based approach to

recursively filter the depth and displacement fields. The modeling is done

with the inclusion of both the spatial and temporal information. By properly

defining the system state vector, the displacement fields can be dynamically

modeled and filtered using established multidimensional filtering

algorithms. This new approach will be shown to provide improvements over

existing algorithms becauseof the explicit modeling of the underlying depth

and displacement field.

2.4. Existing Techniques for Depth and Displacement Estimation

This section reviews the current methods employed to estimate the depth or

displacement using multiple images. This information is presented so that

we may investigate areas that contribute to distortions or errors in the

resultant depth or displacement fields.

2.4.1. Prominent Feature Matching

Prominent feature-based matching of images to estimate a displacement

field results in a relatively sparse number of values in the field. Various

%ignificant" image features are identified and then tracked to the

corresponding feature points in the second image pair in a stereo setup or in

the latter images of a sequence. Once these feature-based points have been

obtained, a set of equations is solved to estimate the 3-D position of the
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objects and possibly the 3-D velocity if the points are from a sequence of

images.

Laing etal. [39] use a laser as an artificialhght source to facilitatethe

identification of feature-based points by following the laser stripe in a stereo

camera setup. The extended Kalman filter,along with the feature-based

points extracted from the image, is used to develop a hand-eye calibration

procedure for robotic assembly.

The issue ofprorn/nent features is not limited to only point locations,

such as boundary intersections or object peaks, but can involve other

features such as line correspondence and curve tracing. A combination of

these approaches, where both point and line correspondences are

determined, is described in [2].

Matthies in [43] makes use of small lateral translations to simplify

the feature correspondence problem. The image features are restricted to a

single scan line by the actual camera translations. Feature translations are

on the order of a single pixel,thus a window width of two pixels is used to

track the features. A I-D Kalrnan filterin the temporal domain is used to

track the image features and provides an on-line estimate of the variance of

the depth estimate.

Potential problem areas with feature-based systems involve the

correspondence problem between frames. This can be a difficult task

depending on the number and kind of features extracted from each image.

As with any matching scheme, loss of correspondence must be worked into

the algorithm to avoid problems with the appearance of new features and

the loss of currently tracked features. The issue of sensitivity to feature
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correspondence is detailed in [16]. Finally, the feature-based systems are

constrained due to the lack of a sufficient number of general models for non-

rigid or curved objects (i.e., typical real objects).

2.4.2. Region Correspondence

The sum of the squared difference (SSD) is one means to establish the region

correspondence between image pairs. The algorithm works by minimizing

an error measure for various estimates on the displacement between the

images. The displacement value that produces the minimal error is taken as

the best estimate of the true displacement. The error measure is based on

the intensity differences between two displaced images and can be described

as:

Ir(x-d y-dy.t)-Ii(x.y,t 2' (15)

where d_ and dy are estimates of the x and y components of the

displacement vector that attempts to bring the two images into

correspondence. In implementation, a square patch region is used around

each location (x,y) in the image. The patch region should be large enough

to capture the underlying intensity contours while reducing sensitivity to

image noise, but at the same time the region must be kept small to achieve

an acceptable resolution. These two requirements place an upper and lower

limit on patch region size, and experimentally a 5x5 region is used for this

research.

In general, the search region for correspondence between patches in

the two images may extend in all directions in the image. By proper

alignment of the camera's optical axes, as discussed in Chapter 1, the search
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region of correspondence can be reduced to a single direction, usually

confined to a single row in an image. Searches for matches need only be

done along the x-axis since Yl = Yr is fixed by the geometry of the cameras.

The goal of region correspondence is to estimate the disparity between the

pairs of stereo images described in equations (5) and (6).

A typical calculation is shown in Figure 2.3. The displacement

estimate, d(x,y,t), is taken to be the %est" match defined by the minimal

error measure. To estimate the displacement between two stereo images

and taking into account the epipolar line, the following equations are used

(utilizing a 5x5 patch):

2 2

e,(x,y;d:)= E E{Ir(x-d_+?'Y+X)-I1(x+7'Y+k)} 2 (16)
_=-2 _.=-2

(ix(x,Y) = drr_n_[e,{x,y:d: )] (17)

From previous knowledge of possible depth values in an imaged scene and

(4), an upper and lower limit on displacement values can be established.
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Figure 2.3 - Typical SSD Calculation
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To speed the computation of (17) at each pixel location in the image, a

course to fine technique is implemented. Candidate values of d_, are first

computed for integer pixel values at each location (x, y). After the minimal

error measure is located for integer displacements, subpixel values are

tested about that value to further refine the displacement value.

If the displacement change is small between sequences of image pairs,

the previously estimated displacement field is taken as the initial estimate

and a small localized area need only be searched. A gradient descent

algorithm may also be implemented to provide an iterative type approach to

obtain displacement estimates [46].

In addition to the pixel intensity based region correspondence

algorithms, other image properties such as edges have been investigated [9,

49]. After edges are localized in an image, edge properties such as position,

contrast, strength, neighboring values, and slope can be used to refine the

matching procedure. Benefits of finding corresponding edges rather than

intensity regions include: reduced computational requirements due to

smaller data sets, greater resolution and localization, and greater invariance

due to following geometric rather than photometric properties. Wohn et al.

in [64] use contour tracing to establish the displacement vectors. A

polygonal approximation is made to the contour, and an iterative scheme is

developed to refine the estimated optical flow field.

2.4.3. Spatio-temporal Gradient Methods

Spatio-temporal gradient methods have been investigated by many authors.

Most of the methods make use of equation (10) as the basis for

computations. The central problem, termed the aperture problem, is that
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(10) provides a single equation with two unknowns, i.e., the displacements

in the x and y directions. Various constraints or smoothing techniques are

proposed to estimate the displacement field while reducing noise due to

gradient computations. These constraints usually follow the assumption

that nearby pixels have similar flow characteristics. With this assumption,

additional constraints [26, 27, 33, 46, 47, 54, 55] are placed on the flow

equation to obtain a solution. Traditional formulations incorporate a

deviation or departure from smoothness to constrain the estimated

displacement field. A common method used to obtain the estimate of the

displacement field is found by a combination of two error measures:

DI DI DI

which measures the departure from the opticaI flow equation, and

e== + + + (19)

which is a measure of the amount of departure from a smooth displacement

field. In order to combine these two error measures a weighting factor, a, is

introduced. The resulting equation is:

E==ff +4)d dy ¢20 

where the total error, E, is minimized over the entire image. Using the

calculus of variations and applying an iterative method based on Gauss-

Seidel, a solution is possible [27]. Denoting V: and _¢_ as the local average

for the current estimates of the x and y component of the displacement

vector at the n th iteration, a set ofiterative equations is developed:
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Finite differences on the input intensity images are used to

approximate the spatial and temporal derivatives. Curiously, the current

velocity components do not directly depend on the previous estimate at that

point. Subsequently, various references [21, 29, 44, 45, 54, 55] have pointed

out the sensitivity to image noise, boundary effects,and the over-smoothing

effects of this iterativeapproach.

Other proposed solutions have looked at establishing a local

optimization problem by utilizingflow values for neighboring pixels [33, 46,

47, 53]. The local optimization procedure is performed by solving (possibly

in a least squares sense) a set of gradient constraint equations for a small

neighborhood in the image. This can be written as:

T Pt (22)

The assumption is that the neighborhood re,on _vill be large enough

to contain sufficient variation to properly condition the solution, but small

enough to provide good resolution. In Kearney's work [33], the conditioning
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and sensitivity of these types of localoptimization approaches are discussed.

Additionally his results show that smoothing or blurring of the input

intensity images to achieve better calculations on the gradients tends to

make the linear equations more ill-conditioned.

A method that we use of in our research is based on a procedure

presented by Martinez in [41]. This algorithm also starts with the optical

flow equation (I0) and minimizes the deviation over a parameterized

intensity patch region to solve the under-constrained nature of the aperture

problem. The local optimization procedure, described above, takes on the

following form for N discrete points:

(23)

¢,(x,y.t) = 1

¢,(x,y,t) = t

Cz(x,y,t) = xy

qb2(x,y.t) = x

%(x.y,t) = x 2

¢s(x.y,t) = xt

¢a(x.y,t) = Y

_)s(x,y.t ) = y2

¢9(x,y,t) = Yt

The parametric signal model parameters, S, were estimated by a

least squares fit to the intensity image:

N

I(x,y,t} = i(x.y.t) = _S,_(x,y, t) (25)
i--I

where i(x,y.t)is the parametric surface approximation to the observed

intensity I(x,y,t). Once the parametric model parameters are known, the

(24)

A parametric signal model is used to estimate the spatial and

temporal gradients of the images to be used in solving equation (23). A

linear parameter model with a set of basis functions ¢, shown in (24), is

assumed in order to make the computations simpler.
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gradients can be calculated directly. The issue of noise reduction is

addressed by the nature of the least squares parameter estimation. The

least squares motion estimator is computationally efficient for small local

changes. A multi-resolution algorithm, where a set of scaled images is

produced, or an extended search region may be required for displacements

greater than the size of the modeling support region.

2.5. Differences in Depth and Displacement Fields

In this section we will review some important differences between depth and

displacement fields. As described before, the displacement map is the 2-D

vector field representing the matching of various intensity patches in one

image compared with another image. In determining a displacement field

from a sequence of images, a patch region centered on a pixel in an image at

time t is matched to a region in another image at time t + T, where T is the

sampling time between image frames. In this case the displacement field is

sometimes referred to as the velocity field.

In determining a depth map from a stereo image pair, the

correspondence between a patch in the left image to one in the right image is

estimated. The left and right frames may also be captured by a single

camera undergoing a known translation, thus falling into the sequential

image notation. Since in both of these operations a 2-D vector map is

produced, the term displacement map can be used to describe either of these

depth fields.

There is a difference in the structure of the displacement field used to

represent depth and velocity. In the stereo correspondence case, the camera

setup or alignment is known a priori; that is the translation and rotation
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between the two cameras are known. The displacement map representing

depth can be reduced by the proper transformation into a 2-D field of scalar

values. This is due to the patch translation constraints imposed by the

orientations of the optical axes of the cameras. In contrast, since the motion

of objects is usually not known a priori, the 2-D displacement map

indicating pixel velocity is generally vector valued.

In addition to the differences in the dimensionality of the

displacement field for depth and velocity, the relative magnitudes of typical

estimates tend to be different. In stereo camera scene analysis, due to the

baseline arrangement, displacements of 10 30 pixels are common.

Correspondence may be difficult to determine. In velocity field estimation,

the correspondence is not as much of a problem due to the temporal

correlation between frames. If the sampling rate is sufficiently high, the

displacement between frames will be small and contained within a local

neighborhood. In cases of larger velocities, a greater sampling rate is

selected or a multigrid algorithm is used to first estimate the larger

components of the velocity field as in [41].

When the displacements are large relative to the support region used

to solve the correlation problem, some type of multi-resolution or extended

search region can be used in the estimation process. A subsampled image or

a Gaussian image pyramid [13] may be used to aid in the correspondence

problem and to estimate initial estimates of larger displacements. At each

level in the pyramid structure, which represents different resolutions of the

intensity image, the previous level's displacement estimate, magnified by

the reduction factor, is used as the new estimate to establish the re,on of
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correspondence. At each higher level, the estimate is refined, thus allowing

the larger displacement to have improved accuracy.

In order for the Taylor series expansion used in (8) to be valid, the

incremental displacements must be small. This is also important when

using a window based estimator, such as in (23), due to the fact that the

velocity vector usually must be constrained to the size of the analysis

window. As the value of the displacement becomes larger, the accuracy of

the approximation decreases. To maintain the validity of the expansion,

equation (8) canbe rewritten in the following form:

_I d DI DI
I(x + dx,y + dy,t + T) = I(x,y,t) + _ × +_dy +_-_T+g (26)

and the linearization is then taken about the initial estimate of d. If the

value is known to be large (such as if previous displacement frames are

available or a pyramid algorithm is used), the displacement can be broken

down into a known displacement and an incremental, subpixel, unknown

component as described by:

Ia:'
a'(m'n) =[a;-'+Sd,J (27)

where at-_is the previous displacement estimate and 5d is the update

quantity to estimate. The unknown component, 8d = d-a _-_, can be

estimated in a local neighborhood around the previous displacement

estimate as was done by Netravali [46, 47]. The application of (7) and (27),

to equation (26) yields:

"'-' t)-_--(d_ "-' _I-(dy "'-')_I(x.y,t)-I(x+d,-a_'.y+d,-d, . -d, )_xx -d, (28)
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This equation allows for large displacement values to be estimated, but the

change between frames in the displacement field must still be small.

2.6. Summary

There has been considerable research applied to the determination of depth

and displacement fields. This is due in part to the fact that there are many

important applications which rely on the quality of the estimation of these

fields. The quality of the results of these applications depends on the

accuracy and reliability of the input depth and displacement fields. There

exist several major methods to estimate these fields, each of which have its

own benefits and limitations depending on the method of image acquisition

and properties of the objects being imaged.



CHAPTER 3

3. Depth and Displacement Estimation and Restoration

3.1. Introduction

In the previous chapter, it was shown that the depth and displacement field

estimation process could be determined from changes in intensity images.

These input intensity images suffer from several types of degradations

which in turn degrade the quality and reliability of the derived depth and

displacement fields. Consequently, a process is needed which can be utilized

to remove the degradations in these fields. Although much attention has

been placed on the estimation procedure for depth and displacement fields,

less emphasis has been placed on developing models that improve the

quality (noise reduction, edge preservation, etc.) of the depth and

displacement fields, thus improving the re_torati0n process. This thesis

shows that it is possible to reduce the degradations by incorporating the

spatial and temporal correlations into a model of the field. The approach is

to model the underlying fields and observation process and then apply this

model to restore the estimated displacement fields from the corrupted

intensity images.

In order to filter out degradation and noise in the fields, several

authors [11, 20, 30, 43, 45, 48] have proposed modeling the displacement

field in either the temporal or spatial domain and derived a filter for the

field. The results of such attempts have been somewhat limited by the

application of an empirical selection of modeling coefficients or the lack of

adaptability to changes within the underlying field.

36
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By employing a model-based approach that incorporates both spatial

and temporal components and determining the modeling coefficients based

on the underlying fields actually processed, this thesis presents a novel

approach to the estimation and restoration of displacement maps which has

escaped previous solutions. The restoration process derived is

computationally efficient and allows for parameter modification for adaptive

filtering.

3.2. Motivation for Model Based Restoration

In typical images, neighboring pixels that correspond to the same object

have a strong correlation in the intensity domain. At each pixel in the depth

or displacement field, an estimate of the depth or velocity is produced.

These values are estimated from the corrupted intensity images, so that the

estimates themselves are subject to degradations. In typical scenes, the

depth or displacement along a body varies slowly for incremental spatial

changes along its surface. Since the depth or displacement field of an

imaged object forms a dense sampling grid, neighboring values in these

fields are also assumed to have a strong correlation. It is this correlation

between adjacent locations in the depth and displacement fields that

motivates a model-based solution for the restoration of the corrupted field.

This restoration problem bears some similarity to the situation faced

in intensity image restoration where the restored image is estimated from

the corrupted intensity values given as an input. Model based restoration

has been employed for many years in work with intensity image restoration

[6, 7, 36, 60, 67]. Reduction in the size of the signal state has led to

computationally efficient identification of model parameters and rapid
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filtering techniques [6]. The type of modeling employed by this thesis is an

extension of the successful models that have been developed for intensity

image restoration.

In dealing with depth and displacement fields that contain

discontinuous regions, an adaptive model process is used to restore these

areas. In model-based image restoration, the filter parameters can be

adjusted or adapted to account for changes in the image spatial content.

The problems encountered with discontinuous regions and boundary

smoothing motivate an adaptive parameter identification approach for depth

and displacement estimation and restoration. Although random image

capture noise can be handled by this process,blurring in the input intensity

images, which results in a highly nonlinear effect on the displacement map,

is beyond the scope of this thesis. Pre-filtering to restore the intensity

images, however, may be used to reduce the blurring effects, as proposed in

[60], before the displacement estimation stage. By properly defining the

modeling processes for the depth and displacement maps, the problem of

restoration can be addressed with well-established multi-dimensional

filtering techniques.

3.3. Literature Review

Biemond et al. [11] propose a two-frame pel-recursive Wiener-based al-

gorithm to estimate displacement for image sequences. They rewrite the

constant displaced intensity assumption (1) and displaced frame difference

equation (2) in terms of frame t and the pre_ous frame t-T resulting in:

I(x.y,t) = I(x-d_.y-dy,t- T) (29)
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dfd(x, y; a x . ay ) = I(x, y, t} - I(x - a x , y - dy, t - T} (30)

where d = (dx,ay) is an estimate of the true displacement vector,

= . " _-I ), tod (dx, dy} Applying an initial displacement estimate, a t-_ = (cl_ _, dy

equation (30) yields:

dfd(x,y.ay',a_-') = I(x,y, t) - I(x - 8=',y - a_-',t - T) (31)

Substituting (29) into (31) results in:

dfd(x,- __1-1 __t-, = _ d. ,y d, ,t-T) (32)y,o X ,Uy ) I(x dx,y-dy,t-T)-I(x-"-' -"-'

Taking a Taylor series expansion of I(x-d.,y-dy,t-T) about location

" t-1

(x- a_',y- d, )yields:

- - d_ ,y dy ,t T)I(x d_,y dy,t-T)=I(x--'-' _-t-1 _

_(d_ ay,.y_ T)+  33)

where V j(.) represents the spatial gradient operator and v is considered a

stochastic process that models the truncation error from linearization.

Substituting (33) into (32) produces an observation equation:

dfd(x, y.a'-' )= -(d - a'-' )T Vxf(x - a:', y - a_-,, t- T)+ v(x, y, d'-' )

= "'-' T) (d d'-' v(x,y,d'-')(34)-vy(x-a:',y-d, ,t- • - )+

where d-_t-_ is assumed to be a sample of a stochastic process and the

spatial gradient operator is viewed as a known transition vector. An update

u is defined as u = d - a t-_ and (34) is applied to a neighborhood of N points

which produces a set of equations through which a Wiener-based estimator

is derived for the displacement update estimate, 6. Finally, the new

displacement vector is estimated by:
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a = a i-' + f, (35)

Biemond et al. use the estimated displacement of the previous pixel as

the initial estimate a t-1 . Their algorithm converged quicker than previously

reported algorithms, but boundary effects and noise sensitivity were not

reported. No other spatial support for this estimate was proposed. Further,

discontinuities in the intensity image may cause trouble in the dfd(.)

calculation and in the estimation of the update term.

An extension to incorporate multiple frames into the Wiener-based

displacement estimator of (34) was presented by Efstratiadis and

Katsaggelos [20]. Their algorithm is similar to that presented in [11], except

that equation (34) is observed over a neighborhood of N pixels in the

previous v frames. A 3-D autoregressive (AR) model with fixed model

parameters was proposed to estimate the initial displacement. The estimate

is sensitive to the initial displacement vector since v past frames are

utilized. Sensitivity to image discontinuities and to motion boundaries

presents even greater problems if motion compensation is used to develop an

initial estimate based on v past frames.

Several researchers propose a variety of models for the depth and

displacement fields. Among these Matthies in [42, 43] proposes the use of a

1-D Kalman filter to track depth estimates based on known camera

rotations and translations. Unfortunately, no treatment of spatial

discontinuities or spatial correlation appears with his work. Instead, a

piece-wise continuous spline under tension, presented by Terzopoulos in

[61], smoothes the results in the spatial domain and bilinear interpolation is

used to predict the new depth value.
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Stuller and Krishnamurthy in [57] propose a model of the

displacement field that relates the spatial characteristics of the field along a

single scan line as:

d(i) = Cd(i- I)+ w(i- 1) (36)

where d(i) is the displacement vector for column i of a single scan line, ¢ is

the transition matrix, and w is a random component used to describe the

uncertainty of the modeling, with a covariance Qw. A Kalman type filter is

implemented to track the displacement values along a raster scan. This

type ofmodeI has severe limitations in that the two dimensionaI spatial and

the temporal characteristics of the displacement fields are not considered.

In addition, results for parameter selection were limited to a few trivial

applications.

Driessen at TU Delft, Netherlands, in [17-19] is presently

investigating the 2-D AR model for the displacement field modeling, namely:

d(x,y)= EAud(x-i,y-j)+v(x.y) (37)
0.j}---s

where A is a set of coefficients for spatial support and v is a driving process.

A nonlinear observation equation based on equation (1) is implemented in

the filtering process. Additionally, a decoupled separable autocorrelation

function is used for the displacement estimates and constant model

parameters, A, are selected for the field. The nonlinear observation is very

sensitive to discontinuities in the input intensity image.

3.4. Depth and Displacement Modeling

Section 2.5 showed that the depth field is composed of scalars and that the

displacement field is vector valued at each location. Several papers [18, 19,
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57] have proposed that the vector components can be decoupled and filtered

separately. This operation is particularly valid when processing

displacement fields computed from stereo pairs. The decoupling of the

vector components allows for a series of modeling equations to be developed

which are dependent only on scalar fields.

3.4.1. System Model

The system model describes the underlying characteristics of the depth and

displacement field. In typical scenes, the depth or displacement of a body

varies slowly for incremental spatial changes along its surface. Thus, it is

reasonable to assume a model which relates a depth or displacement value

at pixel location (x,y) to its neighboring values. To model the relationship

between neighboring values, the field is assumed to be generated by the 2-D

autoregressive model that is described by the following equation:

d(x.y)= E%(x.y)d(x-k,y-1)+w(x,y) (38)
(k.l)eS

where d(x,y) is the depth or displacement component at location (x,y),

c_(x,y) are the system model coefficients at location (x,y) for support

region S, indexed by (k,l), and w(...) is a noise term to account for

inaccuracies in the modeling procedure, w(.,-) is assumed to be an

independent zero mean, white Gaussian process with statisticalproperties

used to describe the field. This modeling is consistent with that which has

been successfully applied by Jain [28] to the description of intensity images.

An example of a possible support re,on S, which may be extended to

various neighboring values, is the M_ × M 2 x Ma _ order Non-S3Tnmetric Half

Plane (NSHP) shown in Figure 3.i.
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Figure 3.1 - Non-Symmetric Half Plane

The M 1 × M 2 × Ma t" order Non-Symmetric Half Plane can be described by:

R_.= k,1 <k<0,1<l<M3] ] (39)

where M, is the vertical extent of the support, M 2 is the left side extent and

M 3 is the right side support extent.

The model coefficients, c(.), are generally space variant. In this

thesis, a 1 x 1 x 1 NSHP support region is utilized following a raster scan

ordering. Specific reasons for the selection of the NSHP are due in part to

its causality properties in filtering which is discussed in Section 3.5. When

estimating homogeneous parameters for the entire field, the model

coefficients are assumed to be wide-sense stationary

(38) may be re-written as:

d(x.y) =

¢k,(x.y) = Ck, V (x.y) (40)

ck, d(x - k, y - 1) + w(x. y)

(k.l)_R .

To be sure of stability, the following constraint is assumed [6]:

(41)
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_c_ <I

(k,l),S

3.4.2. Observation Equation

An observation equation must be generated to describe the observation

process for the field in order to complete the model needed for the estimation

and restoration of depth and displacement fields. Several options are

available from which to choose the most appropriate observation equation.

One option is presented if we obtain a depth or displacement map

from an external source, such as in a block matching SSD algorithm or a

gradient-based algorithm. This is referred to this as the indirect

observation method for depth and displacement field estimation. It is

indirect in that the observation is based on an estimation of the field at pixel

location not directly involving the input intensity images. Mathematically

this may be stated as:

d°(x'Y) = d(x'Y) (43)

where dois the observed depth or displacement and a is the externally

estimated value. In the calculations for the estimate of the depth and

displacement by the external source, various errors are introduced due to

intensity image noises, quantization, and image artifacts. We model these

unknown errors as additive noise to the displacement estimate:

d(x,y) = d(x,y) + v(x,y) (44)

and v(x,y) is assumed to be from an independent zero-mean Gaussian

2
stochastic process with variance o v. In conventional notation, equations

(43) and (44) can be combined as:

(42)
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r(x,y) = d(x,y) + v(x,y) (45)

where r(x,y) is the observation at location (x,y), and v is an observation

noise process.

The second type of observation equation will be referred to as the

direct observation method. Here the displacement is recognized as an

intrinsic component of equation (1). A non-linear observation model based

on stereo frames can be described by:

Ir (x,y,t) = I,(x- dx(x,y,t),y- dy{x,y,t), t) + n(x,y,t) (46)

where II(x,y,t)and Ir(x,y,t) denote the intensity value at pixel location

(x, y) at time t for the left and the right images respectively, and n accounts

for the intensity image observation noise which is assumed to be

independent, zero mean Gaussian noise. Care must be taken when applying

equation (46) on noncontinuous intensity surfaces. One example of such a

case occurs with the problem created with discontinuities between object

and background. An intensity value sampled must be authenticated to verify

that it belongs to the translated intensity region or an erroneous result will

be produced.

Another possibility for direct measurement assumes that the

displacement is estimated along a continuous intensity surface, as would be

visualized in a shaded object or a landscape. Here we can rewrite equation

(10) as:

AI(x,y,t) = I(x,y,t) - I(x,y,t + T)

- It (47)

3I(x.y. t)3I(x,y, t))- - 3x _" (d_ (x.y. t)
dy(x,y.t)) r + v(x,y.t)
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where dx(x,y.t ) and d,(x,y.t) are the x and y component of the

displacement for location (x,y) at time t, and v accounts for uncertainty in

the gradient and modeling approximations.

Equations (43), (46), and (47) deal with the observation of estimated

displacement between image pairs.

Ifestimated depth is to be observed, as in a stereo setup, equation (4)

must be incorporated into the observation equation. In this case, the

observation equation contains only a single unknown, i.e.,estimated depth.

With indirect observations, an external source provides the estimated

disparity or displacement, d_ (x,y), between the two stereo images, thus the

depth observation can be written as:

f
dp(x,y) = b + v(x,y)

dx(x,y ) (48)

where dp(x,y) is the depth estimate for pixel location (x,y), b is the

baseline length, f is the focal length, andv(x.y) is the observation noise

process at location (x.y).

For direct observation of depth from the input intensity images, (3),

(13), and (47) are combined to yield:

1 [_I,(x,y) fTxAI(x,y) = z(x,y) Ox OI, (x,y)fTy]+ v, (x,y) (49)

where I,(x,y) denotes the intensity value at pixel location (x, y) for the left

image, z(x,y) is the depth at location (x,y), T X and Ty are the camera

translations in the x and y directions, respectively, f is the camera focal

length, and vt(x,y ) accounts for uncertainty in the gradient and modeling
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approximations. The image gradients in (49) are taken from the left image

data.

By the geometry of the stereo cameras, dy(x.y) is identically equal to

zero for all locations (x.y) in the displacement field. With these conditions,

1 _I' (x'Y) bf + v, (x, y) (50)
AI(x.y) = z(x.y) /_x

where I_(x,y) denotes the intensity value at pixel location (x, y) for the left

image, z(x,y) is the depth at location (x,y), b is the baseline width or

translation in the x direction, f is the camera focal length, and vl(x,y )

accounts for uncertainty in the gradient and modeling approximations. The

image gradients in (50) are taken from the left image data.

3.5. ROMKF-based Field Estimation

Now that a modeling formulation for the underlying depth and displacement

fields is developed, the filtering process can be examined. The Reduced

Order Model Kalman Filter, ROMKF, is used to filter the depth and

displacement maps based on the models presented in the previous sections.

The ROMK_F is an optimal filter applied to a sub-optimal state. This

procedure allows for easier estimation of parameters, lower computational

complexity, and greater facility for parameter adaptation, while producing

results that are of comparable merit to those of more complex and time

consuming recursive procedures [6]. The ROMKF type of filtering procedure

is recognized as having been successfully applied to the restoration of

intensity images and is shown to work effectively in its application with the

models presented in this thesis.

(49) can be simplified to:
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The Kalman filter is based on modeling the dynamics of a system with

a state-space model. In a single dimension, the state-space model is

described by:

s(m) = Fs(m-1)+Ew(m) (51)

r(m) = Hs(m) + v(m)

where s(m) is the signal space at time m, r is the

measurement of the system, w is a random process

uncertainties of the state model, v is the observation noise, and F, E, and H

are system matrices. F and H are usually referred to as the state transition

and observation matrices respectively, w and v are assumed to be

uncorrelated zero-mean white Gaussian noise processes with covariances of

2 and Qw respectively._v

The Kalman filter extension into processing images of two dimensions

as proposed by Woods and Radewan in [67] can be described by:

(52)

observation or

to account for

s(m,n) = Fs(m- 1,n) + Ew(m,n) (53)

r(m,n) = Hs(m,n) + v(m.n) (54)

A raster scan format is assumed by ordering the pixels from left to

right and top to bottom. This provides a horizontal direction of recursion

where the scanline transition is from a pixel on the rightmost side of the

image to the leftmost element on the next row is assumed. This ordering

made on the 2-D image data provides the context of past, present, and future

states. The past, present, and future pixels are defined with respect to the

current location (x,y) as shown in Fi=oxlre 3.2.
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Figure 3.2 - Pixel Ordering by Raster Scan Format

We need to formulate our model describing the depth and

displacement fields developed in Section 3.4 into a state space model

notation. In equation (41), a NSHP is used for the support region of the

underlying depth and displacement field. This yields:

d(x.y) = Z%d(x- k,y- 1) + w(x,y) (55)
(k.l)¢R .

where the spatial support region Ro. is given in (39). The recursive

properties of the Kalman filter and the ordering assumed by the raster scan

format dictate the use of a causal field model such as provided by the NSHP

support region.

Using the raster scan format, a field model described by (55), and a

depth or displacement field of NhxN v pixels, in the horizontal and vertical

dimensions respectively, the state s(m,n) at location (m,n) is described in

[67] as:
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s(m,n) = [d(m. n),d(m - l,n),.-.,d(l,n);

d(N h,n - i),-..,d(l,n - I);

d(Nh.n - M1)..-.,d(m - M2,n - M,);

b(1- M2,n-M , + 1),...,b(0,n - M, + 1);

b(1 - M2,N v ),.-., b(0, Nv ); (56)

b(N h + 1,n- M_),'-',b(Nh + M3,n- M,);

b(N h + 1,N v - 1) ...,b(0, N v - 1)] r

where b(.,.) are boundary pixels and a M_ x M 2 x M3 m order NSHP is used

for the field model support. The dimension of this state vector (56) is on the

order of O[M_Nh]. This state model support is shown in Figure 3.3.

N V

Nh

::::::::::::::::::::::::::::::::::::::::::::

_i!_i;i?i:i:.;_:i:i;_; !::_i_!_i:i_ii:i::_

M3

M2
IP

!1

_- Boundary Pixels

Figure 3.3 - NSHP State Model Support
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With the above state vector, equation (53) has a state transition matrix F

which is sparse, consisting mainly of shift operators which contain l's and

O's.

The equations to implement a Kalman filter are described in

Appendix A. The filter consists of a prediction and an update equation. The

update equation requires the computationally intensive solution of a

nonlinear equation to compute the filter gain coefficients. The number of

computations in the filtering procedure that are required per pixel is on the

order of O[M_N_]. The amount of storage required to maintain the error

covariance prediction and update for a state size similar to (56) is

considerable. To reduce the computational complexity and the amount of

storage required to implement the filter, several approximations are

required.

In implementing the Reduced Update Kalman Filter, RUKF, Woods

and Radewan [67] make the observation that the image pixels are not

significantly correlated with the pixels outside of a certain region or

neighborhood of a particular location. The error covariance update is

reduced to contain only those pixels contained within this local

neighborhood. While very successful results have been reported [59, 65, 67],

the reduced error covariance update region is still larger than the model

support region.

In an effort to substantially reduce the amount of computational

complexity, Angwin and Kaufman in [7] describe an alternate state

description that has a much lower dimension. The state size is reduced to

the order of the support region utilized in equations (38) and (45). They
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propose a Reduced Order Model state vector, based on the pixels actually

required for the computation of (41) and (45), which can be described by=.

s(m,n) = [d(m,n),d(m-l,n),...,d(m- M2,n);

d(m-M=,n-1).d(m-M 2 + 1,n-1)..-.,d(m +Ma + 1,n- 1);

d(m-M=,n-M,),d(m- M 2 + 1,n-M 1),.-.,d(m + M 3 + 1,n-M,);] T

(57)

where a M_ × M 2 x M_ th order NSHP is used for the field model support.

This state model support is shown in Figure 3.4.

N v

Nh

U

M3+1

Figure 3.4 - ROM State Model Support

As an illustration, the reduced order model for the depth

displacement field state for the 1 × 1 x 1 NSHP support may be written as:

or



53

d(x,y,t)

d(x,y- 1,t)

D(x,y,t) = d(x + 1.y - 1,t)

d(x +2,y- 1,t)

d(x- 1,y,t)

where d(x, y, t) is the depth or a single component of the displacement field.

The dimension of this state vector (57) is on the order of

O[M,(M= + Ma) ]. The state vector, s(m,n), as written in (57), contains

elements that can not be written in terms of the previous state, s(m - 1, n).

This is the basis for the ROMKF procedure where these elements are

approximated by their most recent estimate [7]. This approximation is

made as:

s(m + M3 + l'n-J) = s(m +M3 + l'n- J) + wJ (re'n) (59)

where g(-..) is the best available estimate of the field and wjis a noise term

to account for approximation uncertainties. The most recent update of the

elements at the time that pixel (re,n) is filtered is taken as the best

available estimate. For example: the 1×1×1 NSHP case requires

approximation for only a single term.

d(x + 2,y- 1,t)= d(x + 2,y- 1,t)+ w,(x,y,t) (60)

The previous estimate used in the approximation is included in the state

model equations, (53) and (54), as a deterministic input term u. Thus the

RON_ state equations become:

s(m,n) = Fs(m - 1,n)+ Gu(m,n)+ Ew(m, n) (61)

(58)

r(m,n) = Hs(m,n) + v(m,n) (62)
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where F, E, and H are system matrices and G incorporates the ROM

approximations into the state vector.

The ROMKF implements an optimal Kalman filter on the reduced

signal state space. The lower dimensionality of the state allows for a more

rapid computation of model coefficient parameters and associated gains

calculated from an iterative solution of the discrete-time Riccati equation

(A.9). This reduced state allows for parameter adaptation in a compu-

tationally efficient manner. Usually, the new Kalman gains can be found

with relatively few additional iterations.

Simpson in [56] reviews the effects of var_'ing the extent of the NSHP

support. She reports that filter performance was improved by moderate

extensions of the left side of the support region, while extensions to the right

side resulted in negligible performance improvements over the reduced

order model described by (57). Taking into account the results which

Simpson presents and the computational complexity of larger models, a

1 x 1 x 1 NSHP will be used as the basis for the ROM state. As mentioned

previously, with the use of the ROM state vector, approximations are needed

for the components in the state that can not be modeled by terms in the

previous state. For the research conduced in this thesis, the most recent

estimate is used as the approximation for those terms not represented in the

previous state.

Since blurring is not to be considered, the H matrix reduces to a

selector matrix pic_ng out the appropriate component of D(x. ¥). The state

models for the 1 x 1 x 1 NSHP for spatial, displacement filtering can be

written as:
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D(x,y.t) = FD(x- 1,y,t) + Gu(x,y,t) + E_(x,y,t)

r(x,y,t) = I-ID(x,y,t) + v(x,y,t)
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(63)

(64)

3.6. 2-D Spatial and 3-D Spatio-Temporal

If a sequence of displacement maps is available, it is possible to extend the

spatial ROMKF filter into a spatial-temporal ROMKF by the inclusion of

2
vat(w) = Q_ vat(v) = O'v

where F, E, and H are system matrices, G incorporates the ROM

approximations into the state vector, and the deterministic input u contains

the most recently updated previous estimate of depth or displacement values

for the terms in the current state that can not be written in terms of the

previous state. For example: the 1 x 1 x 1 NSHP case requires only a single

term:

d(x + 2,y-1,t)= d(x + 2,y- 1,t)+ w, (x,y, t) (65)

Hence the deterministic input is:

u(x,y,t) = [d(x + 2, y - 1,t)] (66)
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previously filtered information into the state models. The temporal

contribution, included in the deterministic input from the previous frame's

data, has been filtered and is available. Care must be taken to make sure

that the previous data are taken from the appropriate location and are

tested for erroneous results. There are two special cases to consider for the

temporal component term. The first case is that the displacement vector is

correlated with the previous frame at the same location. For example, this

occurs in a sequence of stereo images in which there is little or no motion in

the scene, and leads to a steady-state displacement map for that scene. The

deterministic input as shown in (63) for stationary temporal displacements

can be described as:

D(x,y,t) = FD(x- 1,y,t) + Gu(x,y.t) + Evc(x,y, t)

r(x,y,t) = I-ID(x,y,t) + v(x,y,t)

u(x,y.t) = [a(x + 2'Y- l't)]

Ld(x+l.y,t-1)J

where c t is the temporal coefficient.

"0 c,]

0 01

G= 0 01

1 01

Io ol

(67)

The other case occurs if the scene contains dynamic or moving objects.

In this case, the current state's displacement value is better represented by

compensating for the motion of the fields. Here we are assuming a

relatively constant velocity model to describe the change in the field from

frame to frame, i.e., little or no acceleration. Denoting (d_,a;) as the

previous displacement estimate for pixel (x,y), the deterministic input can

now be written as:
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D(x,y,t) = FD(x- 1, y,t) + Gu(x,y,t) + Ew(x,y, t)

r(x,y,t) = l=£D(x,y,t) + v(x,y,t)

a(x + 2,y-l,t) ]u(x,y.t)= d(x+l-a_,y-a_,t-1)

=

0 Ct

0 0

G= 0 0

1 0

0 0

(68)

3.7. Summary

A model for describing the depth and displacement field is presented. An

optimal Kalman type filter, which is based on a sub-optimal state space

approximation to the models, is used. The filter, RONLKF, has the benefits

of lower dimensionality thus allowing for simpler parameter estimation,

adaptive filtering, and less computational complexity. Extensions to the 2-D

Kalman filter with the inclusion of a temporal component are discussed.

In equation (68) interpolation of interpixel displacement values may be

if (a_.,aT) does not fall on a lattice location. Alternatively, therequired

motion compensation can be rounded to the nearest lattice location, thus

avoiding the interpolation ofinterpixel displacement values.
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4. Extensions and Implementation Issues

4.1. Introductfon

In this chapter various extensions and implementation issues related to the

basic modeling and filtering procedure are addressed. Due to the properties

of the ROMKF, a lower order system state vector, compared to the full state

vector, is required and thus fewer parameters need to be calculated and

stored. The lower order system state vector reduces the computational

complexity of homogeneous field parameter identification and requires

smaller storage requirements for a set of parameters tuned to filter the

discontinuities in the underlying depth or displacement field.

Section 4.2 presents methods that may be used for parameter

identification of the model coefficients. Section 4.3 investigates several

sources of degradations and errors in the estimation of depth and

displacement fields that may be obtained from the corrupted intensity

images. This provides a better understanding of the error terms included in

the modeling process.

Issues related to processing images representative of typical robotic

scenarios are addressed in Section 4.4. In such scenes, many objects have

well defined boundaries which should be retained both in the intensity

images and in the depth and displacement fields.

Finally, since the fields contain typically large data sets, such as

images of 256x256 or 512x512 pixels, the filter procedure using methods of

parallel computation is discussed in detail.

5'_
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4.2. Parameter Identification and Filter Selection

In Chapter 3, a set of models is provided to describe the underlying depth or

displacement field and the observation process. In most situations in which

the depth or displacement field is estimated from the noisy intensity images,

the system model parameters, ckl(x,y ) in (38), and statistics on the model

and observation noise processes are unknown and must be estimated.

Several methods have been proposed to estimate these values.

When estimating field dependent parameters, the model coefficients

for use in the ROMKF must be determined from the corrupted depth or

displacement fields. A ROMKF/maximum likelihood parameter identifica-

tion method incorporating nonstationary models for adaptive restoration is

proposed by Angevin and Kaufman in [8]. Lagendijk in [37, 38] makes use of

an iterative procedure based on expectation-maximization (EM) to simulta-

neously identify spatially variant coefficients and restore noisy blurred

images. A least mean squares approach presented by Gelb in [22] can be

used over the field to estimate a set of non-adaptive homogeneous system

model parameters.

In the work presented in this thesis, the homogeneous system model

parameters are determined by a least mean squares fit to the entire field as

done by Kaufman et al. [32]. The computation is carried out over the field

that contains valid depth or displacement data. Recalling (41), the system

equation can be rewritten as:

d(n) = C rd(n - i)+ w(n) (69)

where d(n) is the depth or displacement at the current location (x.y). C is

a 4xl vector _th the system coefficientsfor the Ixlxl NSHP support re,on.
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d(n- i)

support region, and w(n) is a modeling error term.

denoted C, is found by:

is a 4xl vector with the depth or displacement values for the

The estimate of C,

a : mcin _(d(n)- CVd(n - I))= (70)

where the summation is taken over the entire depth or displacement field

values. The least squares estimate of C can be determined by:

Vc[_ (d(n) - CTd(n - I))=] : 0 (71)

The solution of which yields:

= (_d(n-l)d(n-l)T)-'_d(n- l)d(n) (72)

Recalling the observation equation (45), only noisy observations of d(n)

andd(n-l) are available for the calculation of (72). These noisy

observations bias the parameter estimate, {_. By incorporating the noisy

observations, taking expectations, and following the above least squares

approach, the estimate of C with bias removal is [32]:

C=(_do(n-l)do(n-l)T-N_2v)-1_do(n-l)do(n) (73)

where N is the summation count, _ is the variance of the observation noise

process in (45), and do(n ) and do(n- I) are the noisy observations of d(n)

and d(n - i) respectively.

Tekalp in [60] proposes a method for adaptive filtering,based on the

use of multiple parameter sets, called the multiple-model approach. While

the least squares method makes use of the corrupted fields to estimate the

system model parameters, the multiple-model method is made independent

of the fieldby establishing a set of fixed parameters based on the underlying
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content of representative field variations. Due to the high computational

cost involved with the parameter identification and space-variant filtering

procedures, Tekalp proposes the use of L a priori designed filters to adapt

the restoration to the variations of the underlying fields. The identification

of adaptive parameters is reduced to the less computationally intensive

detection problem of filter bank selection. A finite bank of model parameters

is pre-calculated and a selection is made as to which model "best applies" to

the given observation window at each pixel location. At the filtering stage,

Tekalp implements a maximum a posteriori probability (MAP) logic

procedure to identify which model to use at each pixel location. Figure 4.1

gives a block diagram of the processing done at each pixel, where r(x,y)is

the observation window at location (x, y) and S(x, y)is the updated state.

r(x, y)

Kalman Bank 1 ,_Kalman Bank 2 k

Nalman Bank 3 _ _

" 2
Kalman Bank L

l

Figure 4.1 - Multiple-model Kalman Filter

MAP

Decision

Logic

A

S(x, y)

Tekalp has reported very successful restoration results for intensity images

using the multiple-model approach over space-invariant models at a fraction

of the computational cost of a continually adaptive identification/restoration

procedure. A significant extension of the multiple-model approach tailored
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for depth and displacement restoration is a portion of the work associated

with this thesis and is presented in Section 4.4.

A useful property of the models presented in Section 3.6 for the 3-D

ROMKF is that the same program can be used to model the depth or

displacement field in the spatial or temporal domain, either independently

or collectively. If the spatial support, {c11.CoL.C_,_.C,o},where ck, as

described in (38), is set identically to zero, the filtering is reduced to

temporal only. If the temporal coefficient c_, described in (67), is forced to

zero, the filter becomes a spatial filter only. This allows for an efficient

performance comparison between the spatial and temporal filters currently

presented in the literature.

Once the system model coefficients have been estimated with any of

the procedures presented above, the Kalman gains for the update equations,

provided in the Appendix as (A.6) and (A.7), can be calculated. In this

thesis, the Kalman gains are found by an iterative solution [31] to the

Riccati equation (A.9). This solution can be written as:

P (y,x) = FP.(y-I,x)F T +EQ_.E T

K(y,x) P (y,x)I-IT(I-IP_HT +Qv) -I= - (74)

P.(y.x) = (I- K(y,x)H)P_(y,x)

where P+and P are the updated and predicted covariance matrices for the

system state vector, F, E, and H are system matrices described in (61) and

(62), I is the identity matrix of the appropriate dimension, and Q,v and Qv

are the covariances for the system model and observation noise, respectively.

The iteration terminates when the updated covariance matrix converges to a
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constant matrix. The Kalman gains, K, found in (74) are kept constant

during the filtering process of the depth and displacement fields.

4.3. Degradations in Depth and Displacement Fields

This section covers the statistical methods used to determine the noise

processes included in the system and observation models. Errors in the

gradient calculation can cause inaccuracies in the displacement estimates

and, in the case of indirect observations, the externally supplied estimates

are sensitive to the noise of the intensity image. The distribution of the

depth field is investigated using images obtained from a stereo camera setup

and the estimated displacement field.

4.3.1. Modeling Noise Variance Determination

In Section 4.2, methods to determine the system model coefficients were

presented. Once a set of coefficients has been estimated, the statistics of the

system modeling error, w, can be estimated. An estimate of the variance of

-2
the modeling error, cw, is determined by using the system model (41) and

the observation equation (45) as shown by Angwin and Kaufman in [8].

d(x,y)- _c(k,1)d(x-k,y-1) -N _ c2(k'l)+l _ (75)
(k,ll_Re. _ {k,llGRe.

2
where d(.)is the distorted depth or displacement value, _v is the variance of

the observation noise, c(.) is the system model coefficients for the NSHP

support region, and N is the number of locations (x,y) used in the

summation. The variance of the R0M approximation [6] described in (60)

was set to _2_ = 1//4 _

For a field with negligible observation noise, (75) can be simplified to:
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I 12¢J_,=_E d(x.y)- Ec(k.1)d(x-k.y-1)
{k.ll_R o.

(76)

4.3.2. Observation Noise Variance Determination

An estimate of the variance of the observation noise process can be made on

a region of the depth or displacement field known a priori to originate from a

constant field. Such regions would occur in the displacement field for an

image section undergoing uniform translation or in the depth field for a fiat

portion of an object viewed normal to the stereo cameras. An estimate of the

-2
variance of the observation noise, ev, can be determined by:

-2= 1 £[d(i,j)_a]2
_" N'.,jl,,w (77)

where N locations are taken from the assumed uniform area W, and d is the

local mean value for the area.

A lower bound on the variance of the observation noise process may be

developed from a statistical treatment of the noise process in the intensity

images. The bound is derived following the procedure outlined by Van Trees

in [62].

In Chapter 2 the correspondence for left and right frames of a stereo

camera setup was established. Ia the ideal setup an imaged object

appearing at Ii(x,y,t ) would also appear at Ir(x-d(x,y,t),y,t ), where

Ii(x,y,t ) and Ir(x,y,t ) are the intensity values at location (x,y) at time t

for the left and right images respectively, and d(x,y, t) is the displacement

value that location. To find an estimate of the displacement, d(x,y, t), (the
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measure of the correspondence between the images), an intensity error

function, e, is given:

e{x.y,t;d'} = It(x- d',y,t)- I,(x,y,t ) (78)

where d' is a possible estimate for the displacement at location (x.y). The

estimate for the displacement is taken as the value of d' which results in an

intensity error closest to zero. Unfortunately, the left and right images are

corrupted by noise. Using I(x,y,t)to denote the imaged scene signal, the

left and the right stereo images may be expressed as:

I,(x,y,t) = I(x,y,t) + n,(x,y,t) (79)

Ir(x.y.t) = I(x + d(x.y.t).y.t) + n_(x.y.t) (80)

where n,(x.y.t) and n_(x.y.t) are uncorrelated zero-mean Gaussian terms

that account for the noise process in the left and right images with variances

2 respectively. Substituting (79) and (80) into the intensity errora_ and ¢Yr,

function (78) yields:

e(x,y,t;d') = Ir (x - d',y, t) - I_(x,y,t)

= i(x- d,,y, t)- i(x,y,t)+ nr (x_ d,,y,t)- nl(x,y,t ) (81)

Since n I (.) and n r (.) are uncorrelated zero-mean Gaussian processes,

e(x,y,t;d') = I(x - d',y,t) - I(x, y, t) + n(x,y,t) (82)

2 2
where n(.) is a zero-mean Gaussian noise term with variance a, = a_ + ¢y_.

To reduce sensitivity to image noise in calculating (82), a patch region is

centered about each possible estimate d', and the error intensity function is

evaluated for each location in the region. A 3x3 observation patch is shown

in Figure 4.2.
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i=1 2 3

4 5_6

Current Location (x,y)

7 8 9

Figure 4.2 - Pixel Indices for 3x3 Observation Patch Region

Assuming that the displacement is constant within this region, a set

of observations may be made. This may be written in the form:

R, = s, (d) + N, i = 1, 2 ..... W (83)

where i is the pixel index within the observation patch region, random

variable (RV) R l is the measurement of the intensity error, Nl is the

random noise process at index location |, and sl(d ) is the intensity

difference which is non-linear in the displacement term, d. With the given

distribution of N, the conditional density function of R given d is:

1 Z(r,-
f"t'(rld) = 24-_. 2G_ (84)

A lower bound based on the Cram6r-Rao inequality for any unbiased

estimate, d, of the actual displacement d is given by Van Trees [62] as:

2
(5 nd]_>

2 = 2 and s_(d) is the intensity difference at pixel index iwhere o, =G L +o r,

within the observation window centered at displacement d.
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Using (82) and (83), the lower bound of the variance of the estimated

displacement from a location in the left image to the right image is found to

be"

OI = Var[d-d] >

For computational purposes, the

estimated from the left image, II.

2

LaxJ

(86)

4.3.3. Density Distribution of Depth and Displacement

Applying the stereo camera setup described in Chapter 2, equation (4)

relates the displacement found between the left and the right images to the

3-D location of the point on the object imaged. In particular, there is an

interesting relationship between depth and displacement (disparity for a

stereo camera) given by [26]:

f
Z=b--; f>O,b>O

X 1 -- X r
(87)

where b is the baseline between the cameras, f is the focal length and

(xl- %) is the displacement between the images at location (x,y). This

relationship allows for a direct mapping from a given displacement field to a

depth field.

The question of two possible computation procedures arises. One is

the issue of filtering then calculating, i.e., filtering the displacement first

and then calculating the depth field, and the other is calculating then

filtering, i.e., calculating the depth from displacement then filtering the

depth field.

gradient of the imaged scene, I, is
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To answer this question, the following assumption is made: the

displacement estimates follow a normal distribution with a mean m, and

= This assumption follows from the observation equationvariance c,.

presented in (44) and (84). The RV S is used for the displacement random

process with the notation S -N(ms.c_) to indicate that S is normal with

= The density function of a RV X is indicated bymean m, and variance _.

fx (x). S has a density function described by:

(,-r_,)2
fs(S) = 1 =o_

_e (88)

Since the displacement is a random process, one can clearly see that

the depth will also be a random process. The RV Z is used to represent the

The relation (87) can be written in terms of RV Sdepth random process.

and Z as:

bf

Z = g(S) S (89)

where the baseline, b, and the focal length, f, are assumed to be known

constants.

The Fundamental Theorem presented by Papoulis in [51] can be used

to find the distribution of Z. The Fundamental Theorem determines the

density of Z = g(S) in terms of the density of S. The theorem states that:

Denoting the real solutions of z = g(s) by s,"

z=g(s,)=...=g(s.) (90)

the density function of Z, fz (z), in terms of the density function of S, fs (s),

is:



69

fs(s,)+.-.' fs(s.)
fz(Z)= _ _ [g,(s.)I (91)

where g'(s) is the derivative of g(s).

Following the above notation, a single solution of (89) is found:

fb
S 1 --_ z (92)

and the gradient of g(s) at that pointequals:

fb
g'(s) = -_-_

Combining (92)

estimates, Z, becomes:

fb

g'(s,) _,=__: (fb/z) 2

Z 2

fb

(93)

and (93) into (91), the density function of the depth

fz(z) = _'fs (94)

The implications of this distribution, with several representative

examples, and the answers to the computation procedure question are

presented, with the appropriate experimental results, in Chapter 5.

4.4. Robotics and Rigid Body Considerations

In the area of roboticvisionand assembly, many of the objectsin the scene

that contribute to the depth and displacement fieldsare known a priori.

Most of the objectsbeing constructedare rigid.In a particularapplication,a

seriesof strutsand nodes are assembled into a space based structure [14].

The struts provide a well defined structure that can be exploited in
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processing the displacement fields. An image representative of a typical

robotic scenario is shown in Figure 4.3.

Figure 4.3 - Image Representative of a Typical Robotic Scenario

In processing rigid bodies, additional information can be extracted

which provides for further processing and filtering of the depth and

displacement fields. In robotic assembly applications, the construction

typically deals with rigid objects of known shape and dimension. Some

examples of such objects include sections on a robot arm, assembly struts,

and various assembly-tool components. With these rigid bodies, information

such as length, width, and geometric shape can be measured beforehand.

This information is then available for processing fields that contain these

items.

A simple example will demonstrate this more clearly. When the

objects in the image are of known shape and length and their orientation

can be determined, e.g., by feature points, this information can be added into
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the depth computation. For example: if the object is a rigid beam of known

length, the depth at one end of the section can be functionally related to the

depth at the other end. Using this additional constraint, the number of

unknowns can be reduced (e.g., depth at both end points can be reduced to

only the depth at one end point).

As was previously mentioned, a problem exists with current methods

used to estimate depth and displacement fields when confronted with

discontinuities. A restoration algorithm that treats the field as a

homogeneous continuous signal tends to greatly smooth out the edgesin the

fields. The exclusive use of homogeneous system model parameters used to

filter fields that contain discontinuities would also be a problem. This is due

to the fact that edge regions are treated in the same manner as continuous

regions. In our robotic scenario, the smoothing of edges in the depth and

displacement fields is undesirable in that the boundary areas of the object

may be misidentified possibly causing the robot to strike the object.

A better solution is to provide a space variant system model and

match the coefficients to the underlying field or local statistics. This brings

up the issues of adaptive parameter identification. In the most general case,

system model coefficients would be identified at each location in the depth or

displacement field. Implementation of continuously adaptive image

restoration is computationally intensive, and would not be appropriate for

high-speed operations. This motivates the search for a solution based on

detecting suitable model parameter sets rather than identifying the

coefficients.
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A series of models is constructed with each one based on a different

direction for the discontinuity. Although a wide range of discontinuity

directions is possible, the 1 x 1 x 1 NSHP model support region is amenable to

4 major directions [59, 60]: 0", 45", 90', and 135". A non-edge model, with

equal coefficient weights or a least squares fit to the field, is used for regions

that do not contain detected discontinuities. Since the models are chosen

before filtering, detection of the edges is computationally less intensive than

identification of the model parameters. The detection of edges permits

adaptive behavior in restoring the fields. Noise and distortions can be

suppressed while minimizing the loss of edge information in the depth and

displacement fields.

Now that a set of directional model parameters is established, the

decision procedure may be described. In intensity restoration, the multiple-

model method implemented by Tekalp uses a decision algorithm based on a

local decision window. This decision window is shown in Figure 4.4.

X ' , (m,n) . ,

XX ....

xxXx
XX

D X(m,n)

_ Y(m,n)

Figure 4.4 - Decision Window for Intensity Image Restoration

The decision is made based on the noisy observations X(m.n) about the

current location (m, n). Y(m, n) is the boundary data consisting of the best

past estimates and the future noisy pixels. An assumption is made that
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there are no model transitions inside the decision window. A maximum a

posteriori probability (MAP) decision logic is used to adaptively estimate the

edge orientation based on the noisy observation X(m.n) in the intensity

image.

For this thesis, the determination of which model applies to a given

location in the field is based not only on the field that is being restored, but

also on the additional information obtained from the input intensity images.

This method differs from that proposed by Tekalp in that the direction of the

discontinuity is not determined by the distorted field being restored by the

use of a MAP decision, but that the direction is estimated by the edge

operators applied to the input intensity images. The input intensity images

are processed to provide information about discontinuity directions. The

procedure begins by preprocessing the input intensity images to determine

edge strength and orientation. The existence of edges in the intensity image

indicates the p0ssibility of edges or discontinuities in the depth or

displacement field. Edges in the intensity image may appear from actual

object boundaries or from changes in the surface characteristics such as

abrupt changes in paint, tint, color, or reflectivity.

There are many proposed methods to identify edge strengths and

directions of intensity images [26, 53]. One method that accomplishes this

identification is the selection by maximal response from several convolution

masks which are passed over the image [53]. Convolution masks are

generated by rotating a base kernel in a clockwise direction. Several types

of kernels can be used to determine edge strength and orientation. An
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example of one, the Compass kernel and its associated masks, is shown in

Figure 4.5.

Compass Kernel [11 ili -2

i 1

Convolution Masks:

[i1!!1[!1ilEili] I:ililD 1 = -2 ,D 2 = -2 - ,D 3 = -2 ,D 4 = -2 .

1 -1 - - -1 - -1

[i! Ii [i il [i ilD 5 = -2 ,D a = - -2 ,D 7 = -2 ,D s = -2 -

1 1 1 1

Figure 4.5 - Compass Kernel and Its Convolution Masks

At each pixel, each mask is convolved with the image and the mask that has

the largest response is taken as the edge direction and stren_h.

S(x,y) = max[convolve(D .I(x,y))]j:_-_s [ _ J (95)

In looking at the masks given in Figure 4.5, D 1 and D s have large responses

for vertical intensity image edges; thus a selection by (95) of either of these

masks, indicates the presence of a 90' edge. Masks D 2 and D s respond to

45" edges, D_ and D 7 respond to O" edges, and D, and D 8 respond to 135"

edges. A threshold is used to determine low contrast or non-edge regions.

The direction and strength are calculated by (95), and the results are

saved for the filtering processing stage. The maximum kernel response is

used in place of the MAP decision. In the actual filtering process, the edge

map only gives locations for possible discontinuities. To determine if there

is a discontinuity in the depth or displacement field, a threshold test is
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conducted using the homogeneous model. The residue portion of the

Kalman update equation (A.6) is used as a measure for discontinuities. The

test is shown in (93):

d(x,y,t)- Ec(k,1)d(x-k,y-l,t) > T
(k.l)liR. l- II 0

(96)

where Hlis the hypothesis that a discontinuity is present, H o is the null

hypothesis, c(-) is the homogeneous model coefficients for the 1 x 1 × l NSHP

model support region, and T is a threshold. This multiple-model filter for

depth and displacement restoration is shown in Figure 4.6. The threshold is

empirically determined based on the variance of the model and observation

noise.

Edge Detector [II(X'Y) -- Direction/Strength

_ Non-EdgeModel_

Kalman Bank 1

ITest/Selectl

r(x, y) Kalman Bank 2 _ _ Decision _- :D(x,'I_ • Logic

• 1 |

t_lman Bank L

Figure 4.6 - Multiple-model Depth and Displacement Filtering

y)

If the residue is found to be large and H 1 is accepted, the edge map is

consulted to see if an edge model applies at that location in the field. If"

there is an edge detected at that location, the edge direction is used to select
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appropriate parameters from the multiple-model set, and a new

discontinuity compensated prediction is calculated. If a better fit is

achieved, the edge directed model is used. Results from this procedure are

effective on synthetic as well as the real test images containing

discontinuities. Supportive experimental information is presented in

Chapter 5.

4.5. Parallel Processing Implementation

Distal image processing involves a sig-nificantamount of data manipulation

and calculations because of the nature of the data involved. Common image

sizes range from 96 x 96 pixels to 1024 x 1024 pixels. In order to process

that amount of data in a timely fashion, itis necessary to incorporate faster

sequential computers, i.e.,faster clock rate or more bandwidth, or break

down the tasks into smaller sections that can be pipelined or computed in

parallel.

The material presented in this section is described without

restrictions to a particular parallel processing system, although it is

particularly suited for implementation on multi-CPU shared bus systems.

The method was originally proposed by Damour in [15]. The approach used

to obtain a parallel version of the filtering process is to isolate the data

independence in calculations. The general algorithm is described and

results are provided on its implementation on a specific MIMD machine in

Chapter 5.

The parallel algorithm beans by looking at the support re_ons for

the model. If the prediction or update re,on incorporates all of the past

pixels then the filteringmust be done sequentially since each calculation
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must use the most recently updated pixel values. This is due to the fact that

no pixel may be processed until all of its past region, as defined in Figure

3.2, has been completely processed. If the support regions are reduced to a

localized neighborhood, as used in the ROMKF, then parallelism is possible.

Since digital images involve a great number of image points, it is

advantageous to seek a method that processes the field in parallel.

To investigate the data independence of the ROMKF filtering

procedure, recall the 1 × 1 × 1 NSHP model support region. Assuming that

the filtering begins in the top left hand corner and proceeds left to right and

top to bottom, a diagonal of independent pixel calculations is formed as

shown in Figure 4.7.

x_\N'_Border Regionx\."_"_ _ _ _ _ _ _ _, ,

1 2 3 4a 5 6 7 8 9 10G H A *'•

4b 5 6 7 8 9 10 11 12

7 8 9 10 11 12 13 14

10 11 12 13 14 15 16

• Ite ratio n ,_ r--"--I

• Count Pixel Identifier

Figure 4.7 - Possible Paralle]ism in ROMK.F

Each number represents the iteration number in which the pixel can

be processed. Each iteration number process must wait until the smaller

iteration values have completed. Those pixels with the same iteration
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values may be processed concurrently. This can be seen by looking at the

4 th iteration. Pixel 4a's support region covers the pixel labeled A and the

border pixels B, C, and D. Pixel 4b's support region covers the pixels

labeled G and H and border pixels E and F. There is no overlapping in

support regions thus 4a and 4b can be processed in parallel. At the 7 _h

iteration number, data independence implies that three locations may be

processed in parallel.

The pattern can be generated for larger dimensional models by

insuring that the top-most right pixel in the support region does not overlap

with the bottom-most lef% pixel in the support region of the calculated pixel

to the right. Clearly with larger support regions, the space between the

pixels that can be processed independently must increase. This increase

between processed pixels decreases the parallelism. The number of pixels

that can be processed in parallel begins at a single location in the top left

hand corner, increases to a maximum close to the diagonal of the image, and

then decreases to a single location at the bottom right pixel of the image.

Given that a precise ordering must be maintained due to the data

dependencies between individual processed pixels, a parallel algorithm must

totally control the sequence of operations.

The Row Method ROMKF is now described. The basic algorithm

treats each row as a single processing element's (PE)job allocation. First,

all of the PE's are placed on a queue awaiting for a message to be sent. This

message will enable a PE to process a row in the field. Once a PE is

assigned a row, the processor will filter every pixel from the left margin to

the right margin. When the PE processes a =sufficient number" of pixels so
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that no overlapping of model regions will occur, a message is sent and a flag

is set for the next PE in the queue to begin processing the next row. Once a

PE has processed the last pixel with respect to the right margin of the field,

it places itself on the waiting list. When the last row with respect to the

bottom margin has been processed, a flag is changed to EXIT, and all

processors exit from the parallel ROMKF routine.

A "sufficient number" refers to the number of pixels that must

separate two concurrent processing PE's so that the support regions do not

overlap. Any overlapping would cause undetermined results since the order

of pixel references and calculations would be random. Since the algorithm

allocates a PE to process an entire row, additional care must be taken to

prevent a PE that is processing in a fut_e row from overtaking the support

region of a PE operating in a _ row. This is accomplished by requiring

that all PE's complete their computations before the next parallel iteration

begins.

Since the exact order of PE execution or effective execution is not

known, due to bus and memory contention and PE time sharing, it is

necessary to place a control on execution. To prevent any differences in PE

execution order, all PE's that are allocated to process rows are synchronized

after processing each pixel. Before a PE can move on to the next pixel, a

synchronization occurs which assures that proper ordering is maintained

and that the past iteration's computations are completed. The PE is

guaranteed that the region it is using has been completely updated by all

past PE's.
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As an example, the following steps occur in processing a field with a

1 ×1× 1 NSHP model support region. PE 1 begins processing ROW = 1.

Once the processor completes the third pixel, a message is passed, enabling

PE 2 to begin ROW = 2. On the next iteration PE, and PE 2 are computing

the filter in parallel. PE 2 signals after processing the third pixel in the row,

enabling PE 3 to begin processing. The next PE on the queue will be

allocated to process the next row, one at a time. If no PE's are available, as

in the case of greater number of concurrent pixels present to be processed

than the number of PE's allocated to execute the filter, that row will wait

until the top most processing PE completes its row. Once the PE on the last

row reaches the third pixel, it sets a flag that instructs each of the other

PE's to exit as soon as it completes processing its row.

This algorithm is completely general for the model size as well as the

field size. It can easily be extended to include various support regions by

simply calling the algorithm routine with the mammum extent for each

direction of the region. Supportive data which displays the reduction in

execution time associated with the parallel row method compared to a single

processor is given in Chapter 5.

A method to perform the multiple-model ROM:KF method follows in a

fashion similar to that described above. A finer parallelism technique,

which makes the processing time independent of the number of filter

models, is detailed in [15].

4.6. Summary

Identification of the parameters for the homogeneous model support is done

on the corrupted field data. The statistics of the various noise processes in
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the model and observation equations are evaluated and a lower bound based

on a Cram_r-Rao treatment of the estimation process is provided. To

address the problems facedby oversmoothing of boundaries in the depth and

displacement fields, a modified multiple-model procedure, based on edge

content in the intensity images, is presented. Since the restoration process

generally works with large amounts of data due to the size of input images,

a parallel version based on data independence is detailed.



CHAPTER 5

5. Experimental Results

Presented in this chapter are the results obtained from applying the model-

based restoration procedure of depth and displacement fields which was

previously described in Chapters 3 and 4. A portion of the reported results

involves the use of synthetic images, which were generated with known

displacements, so that a controlled environment could be available to

demonstrate the benefits of the applied method of restoration of the

distorted fields. At the other end of the experimental spectrum, a set of real

images, taken with a Panasonic M2.6 wv-BD400 camera with varied

baseline widths, is presented in order to demonstrate the effects of

restoration of fields generated from actual stereo images.

5.1. Synthetic Images and Known Displacement

In this set of experiments, a field is generated with known motion and the

results obtained from an indirect measurement and restoration are given.

These experiments can be considered as a basis of comparison since the

exact motion is known throughout the field. The objective of the

experiments in this section is to demonstrate the effectiveness of the model-

based restoration process in restoring displacement fields estimated from

noisy images in regions of low contrast. The SSD algorithm, described in

Section 2.4.2, is used with varied sizes for the patch region utilized in the

error measure. The effect of the patch region size on the improvements due

to restoration is investigated. A RONLK_ with a single spatial model is used

in the restoration of the distorted fields. The model coefficients for these

82
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experiments were found by a least squares fit of the 1× 1× I NSHP support

region to the estimated field. To quantify the restoration improvement, the

clB improvement for the restoration of the distorted displacement field is

defined as:

E (do(x.y) - d(x,y)) _-

Rds = lOlog ¢_.yl_r

E (d(x'Y)-d(x'Y))=
(97)

(x.y)EF

where F is a region selected within the field, d o is the corrupted

displacement field estimated from the noisy images, d is the true field

known a priori or calculated from the noiseless images, and a is the

restored field.

To generate the test cases, images were produced with a linearly

increasing intensity value along the horizontal direction. The equations

that generate these images are:

II(x,y} = Gx+B+ nl(x,y) (98)

Ir(x,y) = G(x + De) + B + nr (x,y) (99)

where I,(x,y)and I_(x,y)are the intensity values at pixel location (x, y)for

the left and right images, respectively, G is the gradient value for the test

image, B is the starting intensity, D c is the constant displacement, and

ni(x,y)and n¢(x,y) are zero-mean uncorrelated Gaussian image

2 and = respectively. Tableobservation noise processes with variances ol o_,

5.1 defines a set of experiments for each gradient value run with various

levels of additive noise in the intensity images.
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Test Name Gradient Constant
Displacement

Testl 1.0 2.0
Test2 2.0 2.0
Test3 4.0 2.0

Table5.1- Synthetic Image Parameters

The experiments were performed with a constant displacement, D c, of 2

along the horizontal direction. Two images, 60 by 60 pixels, v_ere generated

for the image pairs with a constant displacement. The starting intensity

value was 6. The SSD algorithm, described in Section 2.4.2, with a 5x5

patch region is used to estimate the field. In the second part of the

experiment, the window size was decreased to a 3x3 to see the effects of

restoration on varied window sizes for the SSD estimator. For the results

presented in this section, a 36 by 30 pixel region centered in the field is used

for F in (97). The restoration improvement is then calculated from (97).

Figure 5.1 shows the dB improvements of the restored displacement

field for Testl. Table 5.2 contains the model coefficients for Test1 found by a

least squares fit to the displacement field. The image gradient was

increased to 2.0 for Test2. Figure 5.2 and Table 5.3 show the dB

improvement in restoration and model coefficients, respectively. Figure 5.3

and Table 5.4 contain the results for Test3, which has an image gradient of

4.0. As the gradient of the synthetic images was increased, the ability of the

SSD algorithm to estimate a more accurate field increased, and thus the

amount of restoration, primarily due to smoothing, had greater effects as

seen in the increase in the dB improvement at smaller intensity gradient

values, i.e., smaller G values. The model coefficients were found to be

consistent over the range of noise levels.
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Figure 5.1 - Synthetic Image Test1 Displacement dB Improvement

Image
Noise

Variance

0.25

0.50

1.00

CI1

-0.253838

-0.193104

-0.198325

Col

0.480539

0.426388

0.400132

C-ll

0.089381

0.103746

0.110987

ClO

0.590033

0.561594

0.575931

2

(5 w

0.021

0.043

0.068

1.25 -0.196602 0.395352 0.109460 0.573996 0.078

1.50 -0.149406 0.355295 0.115935 0.553915 0.096

1.75 -0.158263 0.367996 0.111321 0.556315 0.107

2.00 -0.155577 0.383068 0.109718 0.200

0.134305-0.159606 0.368803

-0.118534

0.530657

0.5247532.25

0.4512740.386517 0.113569

0.133

2.50 -0.161023 0.389643 0.118011 0.508085 0.151

2.75 -0.160399 0.397533 0.120095 0.500720 0.163

3.00 -0.144955 0.357980 0.146730 0.491243 0.185

3.50 -0.112115 0.361107 0.130766 0.463093 0.223

4.0O 0.264

Table 5.2 - C Model Coefficients for Test1
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Figure 5.2 - Synthetic Images Test2 Displacement dB Improvement

Image
Noise

Variance

0.25

ell

-0.332085

C01 C-I1

0.552803 0.066914

Cl0

0.634953

2

(5 w

0.0O4

0.0100.50 -0.276414 0.501239 0.085115 0.600687

1.00 -0.253838 0.480539 0.089381 0.590033 0.021

1.25 -0.237760 0.459220 0.097369 0.584822 0.027

1.50 -0.223530 0.458222 0.090899 0.575862 0.032

1.75 -0.202800 0.430005 0.105329 0.565599 0.039

2.00 -0.193104 0.426388 0.103746 0.561594 0.043

2.25 -0.178989 0.407997 0.111205 0.553254 0.048

-0.183220

-0.202473

-0.209133

2.50

2.75

0.405837

0.409384

0.422398

0.415691

0.400132

3.00

0.111297

0.112932

0.102219

0.104634

0.110987

3.50

4.00

0.559946

0.573637

0.578342

0.585184

0.575931

- C Model Coefficients for Test2

-0.212750

-0.198325

Table 5.3

0.052

0.054

0.057

0.062

0.068
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Figure 5.3 - Synthetic Images Test3 Displacement dB Improvement

Image
Noise

Variance
ell Col C-ll ClO

2
(5w

0.25 -0.478257 0.683371 0.025255 0.702028 0.0005

0.50 -0.405868 0.617935 0.051354 0.663716 0.001

1.00 -0.332085 0.552803 0.066914 0.634953 0.004

1.25 -0.317141 0.545553 0.067819 0.622703 0.005

1.50 -0.308074 0.537613 0.070110 0.615781 0.006

1.75 -0.289710 0.516094 0.078659 0.606907 0.008
2.00 -0.276414 0.501239 0.085115 0.600687 0.010

2.25 0.0873540.494040

4.00

-0.268939 0.596997 0.011

0.480539

2.50 -0.266136 0.485874 0.094072 0.593846 0.013

2.75 -0.262641 0.474641 0.094751 0.599060 0.014

3.00 -0.254343 0.475108 0.092907 0.593036 0.016

3.50 -0.253031 0.478133 0.089159 0.592872 0.019
-0.253838 0.089381 0.590033 0.021

Table 5.4 - C Model Coefficients for Test3
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The effects of changing the size of the support region used in the

indirect measurement of the displacement field were investigated. In the

previous tests in this section, a 5x5 window was used to evaluate the error

measure described in (15) for the SSD algorithm. The comparison is made

between a 5x5 and a 3x3 window. Figures 5.4, 5.5, and 5.6 show the dB

improvements in the restoration of the displacement field when the

observation window of the SSD operation is reduced to a 3x3 patch region.

The estimates in the unrestored field for the 5x5 window used above are ]ess

noisy than the unrestored field for the 3x3 window due to the smoothing

effects of the larger observation patch region utilized in the SSD error

measure function, (15). The effect of this smoothing is carried over into the

restoration process and a greater dB improvement in restoration is observed

for the 3x3 patch region.
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Figure 5.4 -Synthetic Image Testl Displacement dB Improvement
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Figure 5.5 - Synthetic Image Test2 Displacement dB Improvement
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Figure 5.6 - Synthetic Image Test3 Displacement dB Improvement
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The figures show that the restoration process is effective and

consistent in its dB improvement over a wide range in input intensity noise

levels and small gradients for the image pairs. The distorted displacement

fields derived from the images created with the smaller gradient, Testl, are

noisier than the images with the larger gradient, Test2 and Test3. The dB

improvement for Testl is greater than in the less noisy case, Test3. The

estimates found by the SSD procedure with a 3x3 patch region are more

sensitive to the additive image intensity noise than the larger 5x5 patch

region's fields. The restoration of the fields found by the SSD with a 3x3

patch region has a greater dB improvement due to the smoothing property of

the restoration procedure. The restoration of the noisy displacement field

found by the SSD with lxl patch region produced even greater dB

improvements, but the estimated model coefficients were very sensitive to

the intensity noise level. Generally, the amount of improvement due to the

restoration will decrease as the patch region increases due to the smoothing

effects of the larger regions involved in the error measure of the SSD

algorithm.

5.2. Real Images and Known Displacement

This experiment involved the capture of an image of an actual scene, a

single block taken from Figure 5.13, and the generation of a second image of

the scene obtained after shifting the image horizontally by two pixels. A

series of various noise levels of uncorrelated white Gaussian noise was

added to each image. The SSD algorithm, described in Section 2.4.2,with a

3x3 patch region is used to estimate the field. A RON[KF with a single

spatial model is used in the restoration of the distorted displacement field.
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The model coefficients for this experiment were estimated by a least squares

fit of the 1 × 1 × 1 NSHP support region to the estimated field. Figure 5.7

shows the dB improvements of the restored displacement field for the real

images corrupted by additive noise. The results of the experiment show an

average of a 7.1dB improvement in the displacement field estimates due to

the restoration of" the distorted displacement field.
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Figure 5.7 - Real Image with Known Displacement

5.3. Effects on Prefiltering of Images

The issue of the effectiveness of prefiltering the intensity images to reduce

the noise contribution prior to the estimation of depth and displacement is

now addressed. Since the depth and displacement fields are estimated by

the apparent motion in the images generated by changes in the intensity

values, the presence of significant noise in the image will distort these

intensity values. The noise can present a significant problem in those image
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regions that have sub-pixel displacement vectors. It is difficult to estimate

the displacement vector if the image intensity noise has the same magnitude

as the changes due to motion. In the extreme case of regions that have no

motion, such as in a still background scene,noise in the images can produce

random displacement values. In algorithms that require gradient

operations on the input intensity images, additive image noise will degrade

the accuracy of these estimates.

reduce the noise can be used

displacement field.

Filtering the input intensity images to

to provide smoother estimates for the

To construct this experiment, a procedure similar to that described in

Section 5.1 is used. Two synthetic images are generated with a known

displacement of 2 pixels in the horizontal direction, various noise levels are

applied to the intensity images, and displacement field estimates are found

for the prefiltered and unfiltered image cases. The displacement field is

found by the use of the SSD estimator with a 5x5 patch region. A ROMKF

with a single spatial l xlxl NSHP support region is used for the

prefiltering stage. The displacement field is filtered using a single model

ROMKF. Figure 5.8 shows the sum squared error between the estimated

and the true displacement fields for a 36 by 30 pixel region centered in the

field obtained for Test1.

The markers in Figure 5.8 have two terms. These indicate the

filtering condition of both the input intensity image and the estimated

displacement field. For example: Unfiltered-Filtered indicates that no

prefiltering of the input intensity images was done but that the estimated

displacement field was filtered (restored).
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Figure 5.8 - Effects of PrefilteHng Images

Several observations can be made on the results of this experiment.

First, filtering of the displacement field estimates produces significant

improvement in the results regardless o£ whether the input intensity images

are prefiltered or unfiltered. This shows that for realistic noise levels the

restoration of the displacement field estimates provides superior results to

those obtained by just filtering the input intensity images. Secondly,

prefiltering the input intensity images produces a more accurate field and
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has its greatest effect when higher noise levels in the images are involved.

As the image noise level increases, prefiltering the input intensity images

becomes of greater importance; however, at all noise levels filtering of the

displacement field estimates is of greatest importance.

Figure 5.9 shows the dB improvement, defined by (97), of the restored

displacement fields with prefiltered and unfiltered intensity images. A

region of 36 by 30 pixels centered in the field is used to calculate the

restoration dB improvement.
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Figure 5.9 - dB Improvement in Restoration using Prefiltering

For these synthetic scenes, which contain no discontinuities in either the

image or displacement fields, prefiltering the input intensity images

produces better results. When dealing with complex scenes, care must be

taken not to blur the edges when prefiltering the intensity images as this

can remove sharp boundaries present in the actual depth field.
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5.4. Direct Observation Equation Experiments

In this experiment, an observation model that is based on a direct

measurement of the corrupted field will be used. Recalling (46) for the

stereo camera setup, the observation of the displacement, d(x.y.t), at

location (x.y) at time t is:

Ir(x,y,t ) = I,(x- d(x.y,t),y,t) + n(x.y,t) (100)

where It(-) and IL(. ) are the intensities for the right and left images,

respectively, and n(-) accounts for the observation modeling error. For this

test the observation is made at a specific location, a single pixel, in each

image according to (100). A ROMKF with a single spatial model is used in

the restoration of the distorted fields. The model coefficients for these

experiments are taken from Table 5.4. The left and right images are

generated by (98) and (99) given in Section 5.1 with G = 4.0 and De = 1.0.

A 3x3 Sobel operator [23] is used to estimate the gradients in the left image.

Since the stereo images have a constant displacement in the horizontal

direction, the variances of the estimated field can be used as evaluation

criteria for the direct observation. Figure 5.10 shows the effect of varied

window sizes on the sum squared error between the estimated and the true

displacement field for a 55 by 54 pixel region centered in the field. The

variance of the estimated displacement field increases consistently with the

increase in intensity of the noise since the update equation is based on

single noisy intensity values.

The indirect methods previously described, in Section 3.4.2, made use

of a larger patch region for each displacement estimate. The larger patch

region lessens the effect of the additive noise by an averaging procedure.
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The patch region must be large enough to reduce the sensitivity to noise

while small enough to maintain the local characteristics of the intensity

image.
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Figure 5.10 - Sum Squared Error of Direct Observation

In the next direct measurement experiments, the ROMKF with a

1 x 1 x 1 NSHP single model support region and an observation equation

based directly on the input intensity images is used to estimate the depth

field. Recalling (50) in Section 3.4.2,

1

AI(x'Y) = z(x.y )
aI'(x'Y) bf + v, (x,y) (101)

ax

where Ii(x,y ) denotes the intensity value at pixel location (x,y) for the left

image, z(x.y) is the depth at location (x,y), b is the baseline width or

translation in the x direction, f is the camera focal len_h, and v,(x.y)

accounts for uncertainty in the gradient and modeling approximations. An

observation is made on =inverse depth", i.e., Yz This permits a linear
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observation of the depth at each pixel location. To the system model

equations developed in Chapter 3 is applied a state vector composed of

inverse depth terms. A 3x3 Sobel operator [23] is used to estimate the

gradients needed in the left image. The change in intensity, AI, is estimated

over a square patch region for a single point difference provided very noisy

estimates on the intensity difference. To obtain a smoother estimate the

average intensity difference over a 3x3 or a 5x5 pixel area is utilized. The

results using each patch region size, shown in Figure 5.11, are then

compared.

In the direct observation of the depth field experiment, the left and

right images are generated by (98) and (99) given in Section 5.1 with

G = 4.0 and De = 2.0. Equation (101), with a focal length of 14mm and a

lmm baseline length, is applied on the noiseless images to estimate the true

inverse depth field. The distorted inverse depth field is estimated by

evaluating (101) over the noisy stereo image pairs. A ROMKF with a single

model is used to estimate a restored inverse depth field. The model

coefficients were found by a least squares identification on the corrupted

field. To evaluate the improvement due to the restoration process, a dB

improvement similar to (97) is used on the estimated inverse depth fields.

Figure 5.11 shows the dB improvement of the restoration process for the 3x3

and the 5x5 observation window sizes used in the evaluation of the intensity

difference for (101). The dB improvement is calculated over a 26x26 patch

region centered in the field.

The distorted inverse depth field estimated with a 5x5 obser_-ation

window is less noisy than with the smaller 3x3 window estimator, and thus
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there is a smaller amount of dB improvement due to restoration. The

estimation procedure breaks down at larger levels of noise added into the

input stereo images. This is mainly due to the gradient operation involved

in (I01), which is sensitive to the noise level. At the larger noise values, the

signal gradient is poorly estimated and thus the inverse depth is unreliable.
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Figure 5.11 - dB Improvement of Direct Observation of Depth Field

I

2.5

In the previously described direct depth experiments, the images were

generated with a constant depth field. A spatially variant depth field can be

created by modifying equations (98) and (99) in the following way:

I_{x,y) = Gx + B + nL{x,y) (102)

Ir(x,y) = G(x + D(x,y))+B + nr{x.y) (103)

where I,(x.y)and Ir(x,y ) are the intensity values at pixel location (x,y) for

the leftand right images, respectively, G is the gradient value for the test

image, B is the starting intensity, D(x,y) is the spatially variant

displacement, and nl(x.y ) and n_(x,y) are zero-mean uncorrelated
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Gaussian image observation noise processes with variances _ and o'_,

respectively. The spatially variant displacement would be observed for a

sloped surface imaged in the left and right stereo frames. For this

experiment, the function for the spatially variant displacement is

D(x,y)= x + y
120 240 (104)

As before, equation (101), is applied on the noiseless images to

estimate the true inverse depth field. The distorted inverse depth field is

estimated by evaluating (101) over the noisy stereo image pairs. A 5x5

observation window is utilized for the estimated intensity difference at each

location. A ROMKF with a single model is used to estimate a restored

inverse depth field. The dB improvement is calculated over a 26x26 patch

region centered in the field. Figure 5.12 shows the dB improvement of the

restoration process and demonstrates that the filtering algorithm can be

successfully applied to the restoration of depth fields found by direct

observation of sloped surfaces.
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Figure 5.12 - dB Improvement of Spatially Varying Depth Field
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5.5. Spatial-Temporal Experiments

For this experiment, the images created for Test3, described in Table 5.1,

are used for the image pairs. The model coefficients are found by a least

squares fit to the field with fixed temporal model coefficients in (67). The

additive image noise has a variance of 1.0. The SSD algorithm with a 5x5

patch region is used to estimate the displacement field. The results in this

section are reported in terms of the sum squared error between :];_:

estimated and the true displacement field. The results for the unfiltered,

spatially restored, and spatio-temporally restored fields, for a 36 by 30 pixel

region centered in the field, are listed in Table 5.5.

Temporal Unfiltered SpatialModel Spatio-Temporal
Coefficient Model

0.2 9.835247 2.612037 2.573474

0.3 9.835247 2.612037 2.511555

0.4 9.835247 2.612037 2.588500

Table 5.5 - Sum Squared Error for Spatial vs. Spatio-Temporal Restoration

The field is very smooth in the spatial domain, and there is no temporal

change, therefore the improvement is small. Although the addition of the

temporal component moderately increases the overall dB improvement for

the field, the effect is not dramatic since the spatial field has rather good

estimates. The contribution of the temporal component will be more

significant for sequences that contain spatial discontinuities.

5.6. Adaptive Filtering - Multiple Model Results

In previous experiments, the model parameters were kept constant

throughout the filtering of the displacement or depth fields. These

parameters were estimated by a least squares fit to the entire field. While
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this technique works well in homogeneous regions where the model

represents the underlying field, the homogeneous parameters can have

unacceptable effects when discontinuities appear in the field. Such

discontinuities occur in regions in which the depth or displacement field is

obtained on different objects, a single object moving across a stationary

background, or several objects moving at different velocities or at different

depths.

In images representative of robotic scenarios, depth and displacement

boundary discontinuities are coincident with image intensity boundaries.

The converse of this statement is not true since there can be intensity edges

on a surface that undergo similar displacement between image pairs. To

permit the model parameters to adapt to the underlying field, the edge

information in the intensity image will be referenced to select the most

appropriate model from a bank of model parameters, i.e., the multiple model

process, as described in (95) and (96) of Section 4.4. This selection allows for

adaptive processing by modifying the parameters to follow the estimated

underlying depth or displacement field.

To demonstrate the effectiveness of the multiple model ROMKF over

the single model ROMKF for fields which contain discontinuities, a pair of

stereo images was taken of a scene constructed with a set of blocks. A

Panasonic M2.6 wv-BD400 camera attached to a translation table is used to

capture the images. Table 5.6 lists the parameters for the camera used for

this experiment.



102

Property

Focal Len_h
Horizontal Scale

Horizontal CCD Spacing

Image Center

Value

14.37mm

0.985313

13 microns

(230,244)

Baseline Width Increment 0.5mm

Table 5.6 - Stereo Camera Parameters

The single camera acquires a sequence of images by undergoing small

lateral translations. A depth field can then be acquired with a small

baseline width between frames. These images were selected since there are

clearly defined boundaries between the various objects (the blocks) and the

background. An arbitrary selection of using Frame 0 from the image

sequence for the left frame and Frame 30 from the sequence for the right

frame was made. Figure 5.13 shows the left and the right images for the

stereo pair.

Figure 5.13 - Left and Right Image for Multiple Block Scene

In the estimation of the displacement fields for the image pair, a

simple threshold test was used to segznent objects from the background. A

threshold intensity of 90 produced acceptable quality for the segTnentation.

A compass operator, shown in Figure 4.5, was applied to the left image to
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produce the edge directions and strengths needed for the multiple model

ROMKI_. Figures 5.14 and 5.15 show the unfiltered depth field for the back

and side view. These stereo images were selected since they contained

clearly defined boundaries between the objects and the background. A

displacement of about 20 pixels was observed between the left and right

images.

As a means to show the differences between restoration involving a

single model and restoration using multiple models, the displacement fields

from both the single and multiple model ROMKF will be compared. The

first set of results involves the use of the ROMt_ with a single spatial

model for the restoration of the distorted fields. The displacement field was

then filtered with a single model employing the parameters, found by a least

squares identification over the entire field, listed in Table 5.7.

Cll Col C-ll

-0.528959 0.728204 0.018224

ClO

0.722108

Table 5.7 - Model Coefficients for Single Model for Block Image

The results from the restoration procedure are shown for the back and

side views in Figure 5.16 and 5.17. There is a considerable amount of

smoothing of the edge boundaries, in the order of 10 pixels, due to the

mismatch between the model and the underlying field. This could provide

difficulty in obtaining accurate object edge boundaries for calculations which

work on the depth field.
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Figure 5.14 - Unfiltered Displacement Field of Block Set (Back View

Figure 5.15 - Unfiltered Displacement Field of Block Set (Side View
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Figure5.16- SingleModelFilteredDisplacementFieldofBlockSet (BackView)

Figure5.17- SingleModelFilteredDisplacementFieldof BlockSea(SideView_
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The theory behind using the intensity edge directions to select model

parameters is based on the fact that the pixel locations in the intensity

image and those in the displacement field which are from the same object

should be modeled as such. Clearly there is a benefit to selectively

weighting the coefficients in the state model to include only those state

elements that correspond to the same object. The homogeneous model tends

to smooth out the edges in the depth and displacement field which is

undesirable if the field will be used in subsequent processing, such as

boundary detection for robotic object manipulation.

The next restored fields are obtained by the application of the

ROMKF with a multiple model approach to better follow the underlying field

by using information extracted from the intensity images. For the ROMKF

restoration, five models were designed for the bank of multiple models. The

model coefficients are shown in Figure 5.18. These models were used with

the multiple model procedure described in Section 4.4.

0.001 0.001 0,0_ 0.001 0.001 _

0.996 0.001

0.001

0.001

0.996

0 Degree Edge 45 Degree Edge 90 Degree Edge

0.996 0.001 0.0_ 0.249 0.249 0.2_

0.001 0.249

135 Degree Edge Non-Edge

Figure 5.18 - Coefficients for Multiple Model Bank
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In the compass edge detection procedure on the input intensity images,

edges are found along the edges of the blocks as well as along the edges of

the painted surfaces. The edges that correspond to the painted surfaces of

the blocks do not represent discontinuities in the depth or displacement

field. Since there is no discontinuity in the displacement field as detected by

(96), the non-edge model is used over this area. This test set has a large

difference between the various values of the displacement field. A threshold

of 40 percent of the value was used to detect possible discontinuities in the

displacement field.

Figures 5.19 and 5.20 unequivocally show the edge preservation

provided by the use of multiple models to adjust the restoration procedure to

changes in the underlying displacement field. A couple of artifacts appear

due to misidentification of edge directions. The models, tuned to various

directions for possible discontinuities, maintain the sharp features of the

field. At locations where there are no discontinuities in the field, the non-

edge model is applied to reduce the noise content in the field.

To show the effect of the multiple model more clearly, the profiles

from a row are shown in Figure 5.21. The figure shows the edge of the

blocks along line 35 of the image. The dashed line represents the results

from the multiple model restoration, dotted line is the single model

restoration, and the solid line is the unfiltered displacement field. The non-

edge model for filtering is selected at all columns in Figure 5.20 except for

column 96 where the 90 ° edge model was selected. The smoothing of the

edges in the displacement field by the use of a spatially invariant model is

clearly seen.
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! I

Figure 5.19 - Multiple Model Filtered Displacement Field of Block Set (Back View)

Figure 5.20 - Multiple Model Filtered Displacement Field of"Block Set (Side View)
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Figure 5.21 - Intensity Profile for Displacement Field Restoration

Figure 5.22 displays the depth field from the results of the multiple

model ROMKF restoration of the displacement field. The image is extruded

to simulate the depth at each location.

Figure 5.22 - Extruded Intensity Image to Indicate Depth Field



110

5.7. Depth Density Distributions

The stereo camera setup and equations to relate displacement between the

left and right frames to the location of the point in 3-D space is detailed in

Section 2.2. Recalling (4), the depth, Z, is found to be inversely proportional

to the displacement,(x I -xr), and can be written as:

f
Z = b--; f > 0,b > 0 (105)

X 1 -- X r

where b is the baseline between the cameras, and f is the focal len_h. In

Section 4.3.3, the relation between depth and displacement was detailed in

terms of density distributions. The density distribution of the depth ticlJ

was written in terms of the density distribution of the displacement. The

answer to the computational procedure question posed in Section 4.3.3 (i.e.,

to filter the displacement and then calculate the depth field, or to calculate

then filter) can now be achieved through the application of the following

representative cases.

For the cases in this experiment, the camera parameters shown in

Table 5.6 are substituted into (105) resulting in:

1.218614
Z - (106)

XpI - Xpr

where xp, -xe_ is the displacement in pixel units between the left and right

images. A set of images was synthesized of objects located 0.5 to 2 meters

away from the stereo camera setup with a baseline width of lmm. The left

and right images from the stereo pair are corrupted with additive white

Gaussian noise with a variance of 1.0. The surface of the object had a local

gradient of 2.0 pixels in the horizontal direction. The displacement field

between the left and right image is estimated by the SSD algorithm with a
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5x5 observation patch region. The resulting variance of a 36 by 30 pixel

region in the estimated distorted displacement field was 0.029 (the Cram_r-

Rao lower bound for this case is 0.020). Figures 5.23, 5.25, and 5.27 show

the distribution for the estimated displacements for objects located at 0.61,

1.22, and 2.44 meters, respectively. The displacement values were

generated by 5000 samples from a Gaussian number generator with the

appropriate mean. The distributions for the depth calculations, found by

(105), are shown in Figures 5.24, 5.26, and 5.28 for the three distances.

Figx_re 5.28 has an upper threshold of 10 meters for plotting purposes.

The following figures clearly show the nonlinear properties of (105).

Although the input displacement estimates have a Gaussian distribution,

the calculated depth values are clearly non-Gaussian. The actual

distribution is described by (94).

fz(Z) = _-fs (107)

where fs(') and fz(') are the distributions for the displacement and depth,

respectively.

As the displacements approach zero, the calculated depth approaches

infinity. Thus the depth calculation is very sensitive when there are errors

present in small displacement values. Due to these nonlinear effects,

filtering the displacement before calculating depth is preferred.

The effects of filtering the displacement before calculating the depth

field can be shown by having the displacement field filtered with the models

described in Chapter 3 (ROMKF with a 1 x 1 x 1 NSHP model support). The

estimates of the model coefficient parameters are listed in Table 5.8.
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Figure 5.23 - Distribution of Estimated Displacement for 0.61 meters
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Figure 5.25 - Distribution of Estimated Displacement for 1.22 meters
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Figure 5.27 - Distribution of Estimated Displacement for 2.44 meters
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Figure 5.28 - Distribution of Estimated Depth for 2.44 meters

m

. /

9 10

ell Clo C-ll

" 9-0.528959 O. 128.04 0.018224

CO1

0.722108

Table 5.8 - Model Coefficients for Distribution Experiment
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After the restoration procedure on the displacement field, the variance of the

filtered displacement estimates was 0.009. As before, 5000 samples were

used to produce the distribution plots shown below. The results of the depth

calculations from the filtered displacements and (106) are shown in Figures

5.29, 5.30, and 5.31.

Here the benefits of filtering the displacement are evident. The

overall spread in the depth distributions is much smaller for the restored

displacements than in the case of the unfiltered displacements. Two

observations can be made on the distribution of depth calculated from

displacement estimates, (84): first, the distribution is non-Gaussian, and

second, the calculations are ill-behaved and unbounded for small

displacement values. Application of these observations shows the benefit of

filtering the displacement fields before performing the depth calculation.
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Figure 5.29 - Distribution of Estimated Depth from Filtered Displacement for 0.61 meters
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Figure 5.31 - Distribution of Estimated Depth from Filtered Displacement for 2.44 meters
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5.8. Parallel Processing and ROMKF

Experiments were run to determine the effectiveness of the Row Method

ROMKF. The algorithm was tested on the Sequent Balance 2100. This

multi-CPU shared bus system is a MIMD computer with 16 processing

elements (PE). Each PE is built around the National Semiconductor 32032

processor with a total 16 Mbytes of shared memory and 1 Gbyte of disk

based memory. Each PE communicates with the other PE's by shared

memory and synchronizes by the use of locks. Each PE operates at 0.75

Mips.

As a means of comparing the efficiency of the parallel version of the

ROMK_F, the results of the Row Method, presented in Section 4.5, are

compared to the Table Method proposed by Potter et al. in [52, 66] to

implement the ROMKF in parallel. The Table Method works by setting up a

lookup table in shared memory. The lookup table is constructed by the use

of complex mathematical equations describing the dimensions of the support

model and the size of the input image. The table contains a list of those

pixels that may be processed in parallel and a second list of which parallel

iteration the computation should take place. The lookup table is consulted

by all PE's. Figure 5.32 shows the total processing time in seconds for

filtering a 256x256 field with the ROMKF.

When one processor is used to process the field, the Row Method

requires 14.3 seconds which is more than four times faster than the time

required by the Table Method. Additionally, the Row Method can process

the field in 8.6 seconds when 3 processors are used whereas the Table

Method requires 11 processors to equal this performance. In all cases the
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Row Method is more rapid than the Table Method. The total processing

time continues to decline as the number of processors increases and levels

off at 4.6 seconds when 14 processors are used. Additional PE's do not

contribute to a reduction in processing time due to increased bus contention.

"I0

C
0
0

70T
60

50

40

30

20

10

o

--'--Table Method

Row Method

I I I I I I I I I I I l I I

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Processors

Figure 5.32 - Parallel Execution Time for the ROMIiF

The consistently lower processing time of the Row Method ROMKF is

mostly due to its efficiency in communications along the shared bus.

Efficient message passing is used to initiate and coordinate multi-PE

activity. No global tables need be consulted as in the Table Method. The

Row Method uses localized control which requires less memory overhead

and provides for a reduction in memory contention. The Row Method is also

more flexible in that the allocation of PE's is done at runtime rather than

precomputed as in the Table Method. This allows the Row Method to be
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adapted to different field sizes as well as different model supports without

modifications to the algorithm.

The ROMKF algorithm used in the reduction of distortions in depth

and displacement fields can benefit greatly by the use of parallel processing.

The Row Method ROM_EFprovides a practical, real situation application in

which parallel processing is very effective. The large data set, due to the

size of the depth and displacement fields, may be processed sequentially

with the time required being proportional to the number of data points, N.

The Row Method provides for rapid execution of the ROMKF routine by

recognizing the non-dependence between calculations of fixed locations in

the field and by performing many of the operations in parallel.

5.9. Summary

From the results it is clear that restoration of depth and displacement fields

by establishing a model to describe the underlying field and the observation

process can provide results superior to conventional methods. An

oversmoothing problem introduced by a spatially invariant system model

applied to a field that contains discontinuities is solved by the use of

multiple models tuned to the directions of the discontinuities. Considering

the nonlinear relation between the displacement and the depth field,

filtering the displacement field and then calculating the depth map is

preferred. A highly successful parallel processing version is presented in

detail to address the time critical needs of on-line processing.



CHAPTER 6

6. Summary and Future Research Areas

6.1. Research Summary

In this thesis, a method to restore distorted depth and displacement fields

based on modeling the underlying field and the observation equation is

presented. The modeling provides a means of obtaining more accurate and

reliable field results than current non-model based estimation algorithms.

Significant reduction in the variance of the fields was obtained by the use of

the RONItLF with lxlxl NSHP support region. The improvements due to

the ROMKF restoration are greater when smaller patch regions are utilized

in the displacement estimation algorithm. This is due to the smoothing

effects of the larger patch regions. The model parameters were estimated

from the distorted fields and were found to be stable over a wide range of

intensity image noise levels.

Provisions are presented by which direct or indirect observations may

be entered into the observation equation. Direct observation deals with an

observation equation based on the actual corrupted input intensity images.

Indirect observation uses measurements on the distorted depth and

displacement fields obtained through an external source, such as those

provided through a stereo region matching algorithm. Direct observations

based on single intensity values are shown to be more sensitive to intensity

image noise than observations based on patch regions in the image. The

averaging effect of the patch region operations reduces the sensitivity to

image noise.

120
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The problems encountered with oversmoothing of edge boundaries in

the depth and displacement fields by the use of a single spatially invariant

system model were overcome by the use of multiple models tuned to the

directions of the discontinuities. The multiple model approach allows for

distortion reduction while maintaining clear discontinuities or sharp edges

in the restored fields. Results from processing images representative of

robotic scenarios, i.e., images that contain distinct object boundaries such as

in the block images, clearly show the multiple model's ability to preserve

discontinuities in the field.

Prefiltering the intensity images prior to the depth and displacement

estimation stage is shown to yield a measurable noise reduction in the

restored field. However, filtering of the displacement field estimates

produces a more significant improvement in the results (regardless of

whether the input intensity images are prefiltered or unfiltered). A

comparison was made to show that the restoration of the displacement field

estimates provides superior results to those obtained by just filtering the

input intensity images.

Since image processing deals with large data sets due to the size of

the images processed, a parallel version of the restoration procedure based

on the issue of data independence is presented. The results show that

dramatic savings in total computational time are possible with multiple

CPU concurrent processing. This is particularly important for applications

that have time constraints imposed on the processing of data.
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6.2. Recommendations for Future Research

Issues of adaptive parameter estimation may provide better modeling to the

actual formation of the depth and displacement fields. In this thesis, the

spatial support coefficients were found by a least squares fit to the entire

field or based on a multiple model approach. A continuous adaptive

identification method as is being developed by Koch [36] may provide better

modeling of the underlying field than either of these approaches alone.

Additionally, the temporal coefficient was fixed for the entire field. A

method that tracks the values over a sequence of fields would allow for

adaptive temporal coefficients based on the estimates of the correlation on a

per pixel basis.

The issues involved with blurring of input intensity images and

estimation of depth and displacement need to be addressed. Effective

results may be forthcoming if the blurring effects were to be accounted for in

a prefiltering stage to avoid the non-linear effects which they generate in the

depth calculations. Extensions to the observation equations presented in

Chapter 3 to account for these effects should be investigated.

Although parallel versions of the ROMKF have been presented, a

significant amount of computation is required to obtain the estimation of the

displacements fields between stereo images. To be effective in "real-time"

scenarios, this operation must be carried out more rapidly. Since the SSD

algorithm requires only simple calculations, a parallel version based on a

highly pipelined architecture would seem appropriate for robotic assembly

tasks.



Appendix

Appendix 2-D Kalman Filtering of Intensity Images

Kalman filtering is based on modeling the dynamics of a system with a state

space model. In applications involving images, a scan line ordering was

used by Woods and Radewan [67] and later by Woods and Ingle [65] to

derive the Kalman filter for two dimensions. The recursive structure of the

Kalman filter establishes a causality in the data. A raster scan pixel

ordering still maintains only one direction of recursion. The state and

observation equations for 2-D images are:

s(m,n) = Fs(m - 1.n) + Gu(m,n) + Ew(m. n) (A.1)

r(m,n) = Hs(m,n) + v(m,n) (A.2)

In the system state equation, s(m,n) represents the state vector at location

(m, n), w(m,n) is a forcing or noise term to account for uncertainties in the

modeling, u(m,n)is a deterministic input or control, F is the transition

matrix, and G and E are system matrices. In the observation equation, H is

the observation matrix and v(m,n) accounts for observation noise.

w(m,n) and v(m,n) are assumed to be uncorrelated zero-mean white

Gaussian noise processes with covariances Qw and Qv respectively. The

state error covariance matrix, P, is defined as:

P(m,n)=T[(s(m,n)-s(m'n))(s(m'n)-s(m'n)) T] (A.3)

where T[-] denotes the expectation operator.

The Kalman filter is accomplished in two steps: extrapolation or

prediction and update. The subscripts (-) and (+) are used to denote

123
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immediately before and after the discrete measurement, respectively. The

state and error covariance prediction equations are:

_,_(m,n) = F_(m- l,n) + Gu(m,n) (A.4)

P_(m,n) = FP÷(m- 1.n)F r + DQ_D T (A.5)

The state estimate and error covariance update equations are evaluated as:

_.(m,n)=.__(m,n)+K(m,n)[r(m,n)-Hs (m,n)] (A.6)

P.(m,n) = [I- K(m,n)H]P_(m, n) (A.7)

where K(m, n) is the Kalman gain found by:

K(m,n) = P_(m,n)H_[HP_ (m, n)H r +gv] (A.8)

The error covariance may also be found by the recursive Riccati

equation given by:

P_(m,n) = F[P_(m- 1,n)-

P-(m - 1' n)HT(Hp-(m - l'n) HT + Qv)-'I-IP- (m - l'n) ]FT (A.9)

+ EQ_E T

Gelb [22] and Anderson [5] provide detailed information on the derivation of

the 1-D Kalman filter and its applications. Current applications to image

restoration may be found in [8].
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